
SANDIA REPORT
SAND2005-3294
Unlimited Release
Printed April 2006

Bayesian Methods in Engineering
Design Problems

Laura P. Swiler

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by

Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any of

their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors. The

views and opinions expressed herein do not necessarily state or reflect those of the United States

Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from

 U.S. Department of Energy

 Office of Scientific and Technical Information

 P.O. Box 62

 Oak Ridge, TN 37831

 Telephone: (865) 576-8401

 Facsimile: (865) 576-5728

 E-Mail: reports@adonis.osti.gov

 Online ordering: http://www.osti.gov/bridge

Available to the public from

 U.S. Department of Commerce

 National Technical Information Service

 5285 Port Royal Rd.

 Springfield, VA 22161

 Telephone: (800) 553-6847

 Facsimile: (703) 605-6900

 E-Mail: orders@ntis.fedworld.gov

 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

 3

 SAND 2005-3294

 Unlimited Release

 Printed April, 2006

Bayesian Methods in Engineering Design Problems

Laura P. Swiler

Optimization and Uncertainty Estimation Department

Sandia National Laboratories

P.O. Box 5800

Albuquerque, NM 87185-0370

Abstract
This report discusses the applicability of Bayesian methods to engineering design problems. The

attraction of Bayesian methods lies in their ability to integrate observed data and prior knowledge to form

a posterior distribution estimate of a quantity of interest. Conceptually, Bayesian methods are desirable

because they have the property of taking prior estimates and updating them with data over time. Bayesian

statistics has been dominated by non-Bayesian approaches to inference for many years. However, over

the past decade, there has been an emergence of Bayesian methods, driven by the availability of

computational techniques.

This report outlines Bayesian approaches which could be applied to engineering problems, particularly

design optimization problems. This report first outlines the fundamental principles of Bayesian statistics.

We discuss some simple applications of Bayesian inference, and then present more complex applications

of Bayesian techniques applied to problems of calibration, optimization under uncertainty (OUU), and

verification and validation (V&V). Specific applications of Bayesian methods to engineering problems

include probability of failure estimation, Bayesian regression, Gaussian process models, and hierarchical

or multi-fidelity models.

 4

Page Left Blank

 5

Table of Contents
1. Introduction .. 6
2. Fundamentals of Bayesian Inference ... 7

2.1. Discrete case.. 7
2.2. Continuous case... 7
2.3. Hypothesis Testing .. 7
2.4. Controversy with Bayesian Inference.. 8
2.5. Simple Example of Bayesian Inference... 9
2.6. Conjugate pairs.. 10
2.7. Calculations from Markov Chain Monte Carlo ... 11

2.7.1. Metropolis-Hasting algorithm... 12
2.7.2. Gibbs Sampling... 13

2.8. Bayesian Software ... 13
3. Application to Engineering Problems I .. 15

3.1. Example Reliability Problem... 15
3.2. Binomial Model... 15

3.2.1. FirstBayes solution ... 16
3.2.2. BUGS solution.. 19
3.2.3. YADAS Solution .. 20

3.3. Bayesian Regression.. 24
3.3.1. Regression analysis in FirstBayes... 24
3.3.2. Linear Regression in BUGS.. 27

3.4. Bayesian Regression Models in Optimization... 32
3.5. Bayesian Methods in Optimization ... 34

4. Application to Engineering Problems II... 35
4.1. Gaussian Processes .. 35

4.1.1. Gaussian Process Model of the Rosenbrock function... 37
4.1.2. Netlab implementation of Gaussian Processes ... 38
4.1.3. FBM Implementation of Gaussian Processes ... 40
4.1.4. Prototype SNL Gaussian Process code ... 41

4.2. Calibration under Uncertainty ... 42
4.2.1. Gaussian Process of Model Discrepancy.. 42
4.2.2. Modification of the Gaussian process model for discrepancy .. 43

4.3. High/low fidelity autoregressive models ... 45
4.3.1. Implementation of Autoregressive GP Model .. 46
4.3.2. High/low fidelity autoregressive model results .. 46

5. Summary .. 50
6. References .. 51

6.1. Books... 51
6.2. Papers .. 51

6.2.1. Bayesian Models / Bayesian Calibration .. 51
6.2.2. Bayesian Optimization.. 52
6.2.3. Response Surface Modeling/Robust Design... 52
6.2.4. Surrogate Modeling .. 53
6.2.5. Gaussian Processes ... 53

6.3. Web sites ... 54
7. Distribution .. 55

 6

Bayesian Methods in Engineering Design Problems

1. Introduction

This report discusses the applicability of Bayesian methods to engineering design problems. The

attraction of Bayesian methods lies in their ability to integrate observed data and prior knowledge to form

a posterior distribution estimate of a quantity of interest. Conceptually, Bayesian methods are desirable

because they have the property of taking prior estimates and updating them with data over time. Bayesian

statistics has been dominated by non-Bayesian approaches to inference for many years. However, over

the past decade, there has been an emergence of Bayesian methods, driven by the availability of

computational techniques.

This report was prepared as part of a Laboratory Directed Research and Development (LDRD) project at

Sandia National Laboratories called PRIDE, Penetrator Reliability Investigation and Design Exploration.

As part of this LDRD, our charter was to critically examine the Bayesian framework and identify

Bayesian approaches which could be applied to engineering problems, particularly design optimization

problems. This report first outlines the fundamental principles of Bayesian statistics. We discuss some

simple applications of Bayesian inference, and then present more complex applications of Bayesian

techniques applied to problems of calibration, OUU, and V&V at Sandia National Laboratories.

A recent text on Bayesian analysis [Gelman et al., 2004] states: “In general, work in Bayesian statistics

now focuses on applications, computations, and models. Philosophical debates, abstract optimality

criteria, and asymptotic analyses are fading into the background. It is now possible to do serious applied

work in Bayesian inference without the need to debate the fundamental principles of inference. … Given

the conceptual simplicity of the Bayesian approach, it is only in the intricacy of specific applications that

the novelty arises.” We agree with this statement. We endorse the conceptual framework of Bayesian

analysis. We have found, however, that implementing a Bayesian approach is non-trivial except in very

few cases. The current Markov Chain Monte Carlo (MCMC) sampling methods that are used to generate

posterior distributions are computationally expensive and convergence of the chain can be difficult to

implement and assess. We address the usefulness of Bayesian analysis for engineering design problems.

The current thinking is to emulate simulation models with cheaper response functions such as regression

models or Gaussian process models. The parameters that govern these surrogate models (called

hyperparameters) are then modeled in a Bayesian framework, and posterior distributions of the

hyperparameters lead to posterior ensembles of response surface models. This approach can be applied

to engineering design problems, and may be especially applicable to multi-fidelity problems.

The outline of this report is as follows: Section 2 covers fundamentals of Bayesian inference, including

hypothesis testing, conjugate pairs, MCMC methods used to generate posterior distributions, etc. Section

3 discusses some simple applications of Bayesian methods to engineering problems (e.g., probability of

failure estimation, Bayesian regression), and Section 4 discusses some applications to more complex

problems such as OUU, calibration, and hierarchical models. Section 5 is a conclusion with thoughts

about future directions.

 7

2. Fundamentals of Bayesian Inference

2.1. Discrete case
Bayes’ rule relates the posterior density of a parameter to the likelihood function and the prior density of

that parameter. In the discrete case, the Bayesian formulation for the posterior probability density

function h is:

∑
=

θ
θθθ

θθθ
θ

)()|()...|(

)()|()...|(
),...,|(

1

1
1

gff

gff
h

N

N
N

xx

xx
xx (1)

where x1,…xN are independent and identically distributed observable random vector variables with

probability mass function f(x|θ) [Press, 1989]. Note that f(x|θ) denotes the mass function of random

vector x conditional upon another variable Θ = θ. Θ is assumed to be unobservable, and θ denotes the

numerical value at which Θ is conditioned. In this case, we are assuming that Θ is discrete, and g(θ) is

the probability mass function. The posterior probability density function of θ for a given set of observed

data is h(θ|x).

Note that the denominator of (1) only depends on the data xi’s and not on θ; the denominator is a

normalizing constant. Thus, Bayes formula is often written as:

)()|,...,(),...,|(11 θθθ gLh NN xxxx ∝ (2)

where L(x1,…xN |θ) = f(x1|θ) *…* f(xN|θ) = the likelihood function of the data given the parameter θ for
independent data. The expression (2) is a statement that the posterior distribution is proportional to the

likelihood times the prior distribution.

2.2. Continuous case
The formulation is identical to (1), only the parameter θ is now a continuous parameter with prior density

g(θ). An alternative approach to expressing equation (1) is to use the likelihood function L(x1,…xN |θ)

instead of the conditional probability density functions f(xi|θ). So, one way of expressing Bayes’

Theorem in the continuous case is:

∫
=

θθθ

θθ
θ

dgL

gL
h

N

N
N

)()|,...,(

)()|,...,(
),...,|(

1

1
1

xx

xx
xx (3)

2.3. Hypothesis Testing
Bayesian analysis can be useful for hypothesis testing, specifically in comparing hypothesis H (often

called the null hypothesis) against an alternative hypothesis A. For example, in the discrete case, we may

have H: θ=θ0 and A: θ=θ1. Let T be a test statistic based on a sample of N observations, T≡T(x1,…xN).

Then Bayes’ Theorem states that

)()|()()|(

)()|(
)|(

ApATpHpHTp

HpHTp
THp

+
= (4)

where p(H) and p(A) denote the prior probabilities of H and A (these probabilities sum to one).

 8

Likewise, for hypothesis A, we have:

)()|()()|(

)()|(
)|(

ApATpHpHTp

ApATp
TAp

+
= (5)

Taking the ratio of 4 and 5, we have:

=

)|(

)|(

)(

)(

)|(

)|(

ATp

HTp

Ap

Hp

TAp

THp
 (6)

This is interpreted as the posterior odds ratio in favor of H is equal to the product of the prior odds ratio

and the likelihood ratio. If the posterior odds ratio exceeds one, we accept H, otherwise we reject H and

accept A. Also, the ratio of the posterior odds to the prior odds is sometimes called “Bayes factor” and

only depends on the sample data T. If we assume equal probability on H and A, the posterior odds ratio

is just equal to the likelihood ratio.

This approach to hypothesis testing does differ somewhat with classical hypothesis testing. In classical

hypothesis testing, we are usually interested in testing H: θ=θ0 vs. A: θ≠θ0. If θ is a very small amount

away from θ0, say by distance ε>0, then for sufficiently large N, we will always reject the null hypothesis.

In contrast, the Bayesian hypothesis testing is based on the relative likelihood of the two hypotheses given

the data and the prior odds. So, in the case of θ being very close but not exactly θ0, the Bayesian method

would choose H over A. Also, in the Bayesian approach, the two hypotheses are treated symmetrically so

you can find evidence in favor of the null, which you can’t do with classical methods.

The approach outlined above for comparing two hypotheses can be extended. One common extension is

to have the alternative hypothesis be a “non-informative” distribution such as a uniform distribution.

Then, testing H vs. A gives some indication of the “correctness” of H relative to knowing very little about

the distribution of the prior. Dr. Mahadevan has applied this to a reliability model and has a paper

outlining this form of testing [Zhang and Mahadevan, 2003]

2.4. Controversy with Bayesian Inference
The Bayesian framework allows one to integrate observed data and prior knowledge. In this case where

one has no data or very little data, the posterior distribution is equal to or very close to the prior

distribution. In the case where there is a lot of data, and especially in the case where the likelihood

function differs from the prior distribution, the posterior distribution is dominated by the likelihood

function. In the context of many of the science and engineering problems encountered at Sandia, we need

to seriously question the usefulness of the Bayesian approach. While the approach is very intuitive and

reasonable conceptually, implementation may be difficult depending on the choice of parameters. In

addition, there is the important question of how the Bayesian updating will be performed in a situation

characterized by computationally expensive models and expensive testing. If we only have a few

observed data points, then our posterior distribution is likely to be very similar to the prior and we haven’t

learned that much. If we have lots of data, then we should probably use a maximum likelihood approach

which may be simpler and easier to defend than formulating a prior distribution.

One advantage of the Bayesian approach is that one gets an entire (posterior) distribution estimate on a

parameter as part of the inference procedure, not just a point estimate on a parameter. For complex

models, it can be quite difficult to get good uncertainty estimates of parameters under a classical

approach.

 9

One criticism of Bayesian statistics that we need to be aware of is the formulation of the prior

distribution. Ideally, the prior distribution is supposed to be obtained from subjective judgment and

previous experience. In practice, the prior is often chosen from a family of distributions that makes the

calculation of the posterior distribution tractable. These families are called “conjugate prior” distributions

and will be discussed below in more detail. In the “Empirical Bayes” approach, one estimates the

“hyperparameters” of the prior distribution from the current data set, using maximum likelihood

techniques or sample moments. Calculating the parameters of the prior distribution from the current data

set AND using this data to calculate the likelihood terms in Bayes’ equation violates the theorem: the

prior distribution is supposed to only depend on its parameters and not on the data. This situation can

result in incoherent estimators. In most mainstream Bayesian approaches now, people use MCMC

methods to estimate the parameters.

There are deep philosophical differences and ongoing debates between statisticians who consider

themselves frequentists and those who are Bayesian. This report does not address these differences, nor

does it address the many subtleties associated with a subjectivist interpretation of probability. Interested

readers are encouraged to look at [Jaynes, 2003] and [Lindley, 1965] for more background. Another good

reference which discusses pitfalls of Bayesian methods, specifically when used with risk assessment, is

found in [Ferson, 2005]. Ferson states that the use of Bayesian methods in risk assessment sometimes

produces overconfidence and arbitrariness in the computed answers, due to misuse of equiprobability for

incertitude, overuse of averaging to aggregate information, and reliance on precise values and particular

distributions when the available information does not justify such specificity. We generally agree with

this criticism, but do not address these limitations in this report since we focus on how one could use

Bayesian methods for particular problems in engineering design under uncertainty.

2.5. Simple Example of Bayesian Inference
Examples are helpful to see the implications of using Bayesian inference. To start with, consider the

binomial distribution. This is often used to model the number of successes, x, in n independent trials. If θ
= the probability of success on a signal trial, then the probability mass function for x is:

xnx

x

n
xf −−

=)1()|(θθθ

Let us assume that θ can have two possible values, 0.3 and 0.6, with the following prior mass function:

P{θ=0.3}=g(0.3)=0.1 and P{θ=0.6}=g(0.6)=0.9. According to Bayes’ Theorem, the posterior probability

mass function from Equation (1) is:

)4.0()4.0()6.0()3.0()7.0()3.0(

)()1(
)|(

gg

g
xh

xnxxnx

xnx

−−

−

+

−
=

θθθ
θ for θ=0.3 and 0.6.

Suppose n=5 and x = 2. Then h(0.3|x)=0.13 and h(0.6|x)=0.87. Thus, h(θ|x) does not differ that much

from g(θ), since the update was only based on five points. The posterior distribution does reflect the fact

that in this set of data, θ is closer to 0.3 than 0.6 and so the probability of θ=0.3 has risen from the prior

value of 0.1 to the posterior value of 0.13.

A related example shows how the update differs if we assume that θ is a continuous parameter between

zero and one. In this case, the posterior density is:

 10

∫
−

−

−

−
=

θθθθ

θθθ
θ

dg

g
xh

xnx

xnx

)()1(

)()1(
)|(

If we assume a uniform prior, then g(θ) = 1 for 0< θ <1, and g(θ) = 0 elsewhere. In this case, the

posterior distribution is given by:

)1,1(

)1(
)|(

+−+

−
=

−

xnxB
xh

xnx θθ
θ

where B is the beta distribution. The posterior distribution is a beta distribution with a mode at the value

θ=x/n. The mean of θ given x is E(θ|x)=(x+1)/(n+2).

Often a beta distribution is assumed for the prior density function g(θ), where θ is the parameter of the

binomial distribution. In this case, g(θ) is given by:

),(

)1(
)(

11

βα

θθ
θ

βα

B
g

−− −
=

where 0< θ <1, 0<α, and 0<β. Note that in this case, we are postulating that the prior distribution for one

parameter is characterized by a two-parameter distribution. Thus, to specify the prior distribution, we

need to determine α, and β. The mean of this beta distribution is given as α/(α+β), and the mode is given

by α-1/(α+β-2). If someone specifies the mean and the mode, or the mean and the variance, it is possible

to solve the equations to obtain α and β. The posterior distribution of θ given x is also given by a beta
distribution:

),(

)1(
)|(

11

βα

θθ
θ

βα

+−+

−
=

−+−−+

xnxB
xh

xnx

This means that if one is updating the parameter θ that characterizes a binomial likelihood function, and if

the parameter θ has a prior distribution that is beta, the posterior distribution is also beta and the
parameters of that beta distribution can be obtained very easily from the data. This situation, where the

prior and posterior distributions come from the same family of distributions, is called a “conjugate prior”

or a conjugate pair. More examples of conjugate priors are listed in Table 1.

To demonstrate the continuous case, assume that g(θ) is given by a beta distribution with α = 3 and β

=12. In this case, E(θ) = 0.2 and the mode of θ is 0.15. If we have x=2 and n=5 as in the discrete

example, we find that the posterior distribution is a beta distribution with parameters (x+α, n-x+β), or
B(5,15). The mean of the posterior beta distribution is 0.25 and the mode is 0.22. The posterior

distribution has changed based on the data.

2.6. Conjugate pairs
As mentioned above, there are distribution families which are often used as prior distributions because

they have convenient mathematical properties. These families are called natural conjugate families, and

the prior distribution is called a conjugate prior. In such cases, performing Bayesian updating usually

does not involve complex integration: the posterior distribution is from the same family as the prior, with

parameters that can be obtained from the prior parameters and the data.

 11

Table 1 shows some conjugate prior distributions.

Sampling Distribution Conjugate Prior Distribution

Binomial Success probability is beta

Negative binomial Success probability is beta

Poisson Mean is gamma

Exponential with mean (1/λ) λ is gamma

Normal with known variance

but unknown mean

Mean is normal

Normal with unknown

variance but known mean

Variance is an inverted gamma

Table 1. Conjugate priors associated with various sampling distributions

2.7. Calculations from Markov Chain Monte Carlo
It is not always possible to formulate a Bayesian analysis with one of the conjugate priors as outlined in

the section above. Many times the calculation of the posterior density function involves complex

integration. There have been specific methods to approximate Bayesian integrals developed for low-

dimensional cases (e.g., Tierney-Kadane, Lindley approximations). To calculate the posterior distribution

for higher dimensions, some type of Monte Carlo method is often used to generate samples over which

the integrand is calculated. A popular method for doing this is called Markov Chain Monte Carlo

(MCMC), where one wants to generate a sampling density that is approximately equal to the posterior

density.

The idea behind Monte Carlo Markov Chain is to construct a Markov Chain such that its stationary

distribution is exactly the same as the distribution of interest [Gilks et al., 1996; Gamerman, 1997]. A

stationary distribution of a Markov chain with transition probability matrix P(x,y) is f if:

fY (y) = fX (x)
x

∑ P(x, y)

for a discrete state chain. The continuous state equation relates the state of the system after n steps to the

state of the system at n-1 steps:

fY
n
(y) = p(x, y) fX

n −1
(x)

−∞

∞

∫ dx

Another representation that is often used is that we want to obtain E[f(x)]

dxxfxpxfE ∫
∞

∞−

=)()()]([

in situations where drawing samples from the density function p(x) is not feasible and the inverse

transform is not available (note: by inverse transform we mean draw a sample from U(0,1), equate this

random number to a cumulative probability from distribution p, then solve for x given this cumulative

probability).

The point of using MCMC methods is to generate a Markov Chain {X0, X1, X2, …} where Xk+1 only

depends on Xk. The distribution of Xk will approach a stationary form as k gets large, but in practice, one

has to ignore the first M iterations. That is:

∑
+=

>−
−

N

Mk

xfExf
Mn 1

)]([)(
1

 12

Determining n and M is not trivial. In practice, people often ignore the first 1000 samples. Another

commonly used technique is to plot the chain (the simulated distribution vs. iteration number) to see the

behavior and graphically determine when it looks like it has converged.

One benefit of MCMC is that you do not need to know the normalizing constant in Bayes’ formula. The

normalizing constant typically prevents an easy analytical solution for the posterior. This is one reason

Bayesian statistics were not considered practical to implement until MCMC methods became widespread.

There are several methods for generating the Markov chain that has a stationary distribution with the

properties of interest. Three of the best known are the Metropolis-Hastings algorithm, the Metropolis

algorithm, and Gibbs sampling. Here is a brief outline of the Metropolis-Hastings algorithm. In this

approach, one needs to define a “proposed density function” for generating the next point, conditional on

the previous point generated in the chain. This density function is given by q(Y|X). The density of

interest (e.g., the posterior density) is given by f(X).

2.7.1. Metropolis-Hasting algorithm

Set i=0.

Repeat until converged:

1. Sample a candidate Y from the proposal density function qY(Y|Xi)

2. Calculate the acceptance ratio α(X,Y) = min(1,
fX (Y)qY(Y | Xi)

fX (X)qX(X i | Y)
)

3. Sample a uniform (0,1) random variable U

4. If α(Xi,Y)≥U, set Xi+1=Y, else set Xi+1=Xi.

5. Increment i.

Although the algorithm is simple, there are many issues: how does one choose q, does q have to be a

symmetric distribution so that q(Y|X) = q(X|Y), how does one deal with multiple variables, etc.? In the

case of multiple variables, there is a stepwise procedure where one has to specify all the full conditional

distributions (distributions of one variable conditional on all of the others). The conditionals are often

nontrivial to calculate. Finally, the issue of convergence is very important in MCMC: when is the set of

generated points a close enough approximation to the posterior that one can stop sampling?

These questions are addressed in more detail:

First, the issue of selecting the proposal density q: In theory, it doesn’t matter what density function one

chooses for q. In practice, it matters a lot because some densities will converge more quickly than others.

There are many options for q, but here are some of the most common ones:

1. Symmetric chains. In this case, q(X|Y)=q(Y|X). For this situation, the acceptance ratio reduces

to)
)(

)(
,1min(),(

Xf

Yf
YX

X

X=α .

2. Random walk chains. A random walk is a Markov Chain defined as θj= θ j-1+ωj, where ωj is a

random variable, usually with a multivariate normal distribution fω. In this case, q(Y|X)= fω(X-

Y), where Yj is drawn according to the process Yj-1+ωj. The random walk chain results in

proposed values equal to the current value plus noise.

3. Independence chains. In this case, q(Y|X)= q(Y) and the proposed transition is formulated

independently of the previous position of the chain.

For the Metropolis-Hasting algorithm, the acceptance rate is critical and the parameters governing the q

distribution must be tuned appropriately. If the moves are very small and the acceptance probability is

very high, most moves will be accepted but the chain will take many more iterations to converge. If the

 13

moves are large, they are likely to fall in the tails of the posterior distribution and result in a low value of

the acceptance ratio. One wants to cover the parameter space in a computationally efficient fashion.

Many studies have been done on optimal acceptance rates, and the results seem to indicate that 0.45-0.5 is

the optimal acceptance rate for 1-dimensional problems, whereas 0.23—0.25 is the optimal acceptance

rate for high-dimensional problems. [Gamerman, 1997] In some cases, it can be difficult to tune the

proposal density parameters to obtain these acceptance rates. There have been two approaches to analyze

convergence of a MCMC: one is more theoretical and examines the structure of the chain itself, and the

other is more empirical and analyzes the properties of the observed output from the chain [Gamerman,

1997]. The empirical methods have had more success as applied to real-world problems. One method is

to take n parallel chains, and run each of them for m iterations, and build a histogram of the mth iterates.

This can be repeated after further k iterates are obtained. Convergence is accepted when the histograms

cannot be distinguished.

2.7.2. Gibbs Sampling

Gibbs sampling is an attractive MCMC method because it doesn’t require a proposed density: the

proposal distribution is built directly from the conditional density functions of the posterior. Because of

this, Gibbs sampling is very appropriate for Bayesian analysis and high-dimensional problems, but only

when the full conditional distributions are tractable and can be sampled from easily. Note that the new

points are always accepted in Gibbs sampling. Gibbs sampling is a special case of the Metropolis-

Hasting algorithm, where the proposal distribution is chosen to be the full conditional and thus all the

terms in the acceptance ratio cancel out and the acceptance ratio is always one.

Gibbs Sampling Algorithm

Set i=0, and initialize the chain as),.....,(00

2

0

1

0

dXXXX = for a d-dimensional random vector X.

Repeat until converged:

Obtain new values of),.....,(21

i

d

iii XXXX = through success generation of values:

a.),.....|(~ 11

211

−− i

d

ii XXXX π

b.),.....,|(~ 11

3122

−− i

d

iii XXXXX π

.

.

.

 c.),.....,|(~ 121

i

d

ii

d

i

d XXXXX −π

Increment i.

Thus, at each stage when one is calculating a particular value for an individual variable, it is done based

on the “full conditional” distribution of that variable with respect to the other variables. The latest

information for the other variables is used in the conditioning.

2.8. Bayesian Software
There are many software packages available to perform various aspects of Bayesian computation. In the

reference section, we provide a list of websites of interest. We have looked at five software packages in

detail: FirstBayes, BUGS, YADAS, FBM, and Netlib. Below is a short summary of each of these

packages. They are used and explained in more detail throughout subsequent sections of this report.

Anthony O’Hagan of Sheffield University, UK, created a teaching program called FirstBayes for people

wanting to work through some examples and learn Bayesian statistics. It is fairly easy to use, and quite

 14

useful for showing how a prior distribution or likelihood function will affect the posterior distribution in

various situations. The allowable distributions are one-dimensional conjugate priors. FirstBayes runs on

Windows and requires manipulation of system configuration settings to start. FirstBayes has a GUI and

can be useful to provide some ideas for test problems or prototype examples. One of the nice features is

that it overlays the prior, posterior, and likelihood function on top of each other in a graph so that one can

compare them.

BUGS (Bayesian Inference Using Gibbs Sampling) is software based on the Gibbs sampling MCMC

method. BUGS is one of the MCMC packages with the longest history. It was developed by MRC

Biostatistics group and Imperial College School of Medicine, St. Mary’s, London. A UNIX version is

available but no longer supported. The Windows version requires a commercial license. BUGS has been

tailored for reliability and biostatistics applications, though it can be used for general problems.

Capabilities include the ability to handle hierarchical/nonHierachical models, conjugate and nonconjugate

distributions, polynomial and logistic regression, weibull analysis and survival models, random or fixed

effects, mixture models, and spatial models.

We have used the UNIX version of BUGS with a command line interface. It requires some work to

understand the model specification, but the problem set up and execution is fairly straightforward. The

user does not have much control over the actual sampling (choice of proposal distribution, for example).

YADAS (Yet Another Data Analysis System) has been developed by Todd Graves in the Statistical

Sciences Division at LANL. YADAS is open source software written in Java. It has very similar

capabilities to BUGS. Overall, it is more flexible than BUGS and allows more user control, but is

somewhat harder to use. The user has to write Java classes vs. scripts in the BUGS command interface.

Radford Neal at University of Toronto has developed FBM, Flexible Bayesian Modeling. This code is

written in C and command line driven. It has a lot of capabilities: Bayesian regression and classification

models based on neural nets or Gaussian processes, Monte Carlo Markov Chain sampling, and clustering

methods using mixture models. The documentation is reasonable but somewhat cryptic. Specifically,

the formulation of the hyperparameters and the specification of the MCMC are not intuitive at all. It is

very difficult to understand what is driving the output results.

Netlab, developed by Ian Nabney and Christopher Bishop of Aston University, UK, is a collection of

Matlab M-files. The Netlab library is most similar to FBM. It was developed for data analysis and neural

network modeling. Netlab has a lot of capabilities, including pattern recognition/classification, Principal

Component Analysis, K-means clustering, self-organizing maps, multi-layer perception networks, and

radial basis function networks. The Bayesian component focuses on updating hyperparameters which

govern some of these data modeling methods (such as RBFs, neural networks, or Gaussian processes).

To summarize the software tools: there are a lot of bits and pieces available, but there is no one Bayesian

software tool which addresses Sandia’s needs in computational modeling for engineering design,

especially for updating multivariate distributions. Many of the tools require substantial statistical

knowledge and domain expertise to formulate the problem correctly, and to interpret the results to ensure

that the posterior distributions are approximately correct.

 15

3. Application to Engineering Problems I

This section discusses the application of Bayesian methods to engineering problems. These applications

are widely cited in the literature, specifically reliability estimation and Bayesian regression.

3.1. Example Reliability Problem
To demonstrate the application of Bayesian methods to a reliability problem, we start with a test function

commonly used in optimization, the Rosenbrock function. It is given by:
2

1

22

1221)1()(100),(xxxxxf −+−= . A contour plot of this function is shown in Figure 1, for

variable bounds 2,2 21 ≤≤− xx .

Figure 1. Rosenbrock’s Function

The unique solution to the optimization problem: min f(x1,x2) over this domain is given by the point

(x1,x2) = (1,1) where the function value is zero.

A test function such as the Rosenbrock function is nice to use for a Bayesian analysis because we have

the following:

1. A set of samples of the function over the input space

2. The “true” function

3. An approximation of the function (given by a surrogate)

We used the LHS sampling method within DAKOTA to generate 110 sample values.

3.2. Binomial Model
In this example, we are interested in the probability of failure over the input space. Arbitrarily, we

defined the probability of failure as the probability that the response is greater than 1000. For the 110

2

-2

0

1

1000

-1

2000

0

0

3000

X1

Fn. Value

1
-1

2
X2 -2

Rosenbrock's Function

 16

LHS samples performed during the surrogate run, 13 samples had objective function values > 1000. This

corresponds to a probability of failure estimate for the sample of 0.118.

To show how we might use Bayesian analysis to obtain a posterior distribution on p, the probability of

failure, say we use a binomial distribution to model failures. That is, the probability that one will have k

failures in n trials is given by:

knk pp
k

n
pnkpk −−

==)1(),|(Bin)|Pr(

We are interested in obtaining the probability distribution of p, given the data. That is, we want Pr(p|k,n).

To do this, we first need to specify a prior distribution for p. The conjugate prior distribution for p is a

beta distribution:
11)1()Pr(−− −∝ βα ppp , so p~Beta(α,β). The posterior distribution for p given k

failures out of n trials is:

11)1()|Pr(−+−−+ −∝ βα knk ppkp , so the posterior distribution is a Beta(α+k,β+n-k).

Note that the mean of the posterior distribution, which can be interpreted as the posterior probability

estimate of failure for a future sample from the population, is:

n

k
kpE

++

+
=

βα

α
]|[. This value lies between the sample value k/n and the prior mean, α/(α+β).

3.2.1. FirstBayes solution
In this example, we arbitrarily created a prior beta distribution for p, assuming that my prior knowledge

was that the mean probability of failure was 0.10. The beta distribution we chose was Beta(10,90). We

used the FirstBayes software to generate the posterior distribution. The prior information is shown in

Figure 2.

Figure 2. Beta Prior for Binomial Failure Example

 17

The plot showing the prior, the posterior, and the likelihood function is shown in Figure 3:

Figure 3. Bayesian Updating of the Beta Distribution for p, the Failure Probability

This shows that the posterior distribution is between the prior and the likelihood function. In fact, the

posterior distribution shown in Figure 4 is a Beta(23,187) which is the formula Beta(α+k,β+n-k) since we

had 13 failures and 97 successes in the original 110 points.

 18

Figure 4. Posterior Distribution Summary

The posterior distribution would be different if we assumed a different prior. For example, with a prior

given by a Beta distribution(1,9), the mean is still 0.1 but the variance is much higher, and the posterior

distribution is now much closer to the likelihood (less “weight” is given to the prior). This is shown in

Figure 5.

Figure 5. Binomial Failure Example with Be(1,9) prior distribution on p

 19

3.2.2. BUGS solution

In BUGS, the input file for this binomial reliability model looks like:

The data in read by this file is in the form K[i],Y[i], where K[i] = number of failures and Y[i] = number

of trials thus far. K[i] is distributed as a binomial distribution with failure parameter p on number of

trialsY[i], and the parameter p is distributed as a beta distribution with parameters (10,90) as in the

FirstBayes example shown above. The data file for the BUGS example looks like:

0 1

0 2

0 3

0 4

1 5

1 6

1 7

1 8

1 9

1 10

1 11

1 12

2 13

2 14

3 15

4 16

4 17

4 18

etc.

The output results from running this BUGS example are shown below. There are two outputs: summary

statistics relating to the run (statistics on the output distribution of p), and a file with the results of

sampling p according to the Gibbs MCMC procedure. The summary output is as follows. First, we ran

500 samples to account for initialization effects. Then, we ran 1000 samples. This generated a p with a

mean value of 0.1219 and standard deviation of 4.174E-3. We then ran another 10000 samples to see if

the samples generated by this Markov chain would change. They did not change significantly:

Bugs>update(1000)

 time for 1000 updates was 00:00:00

Bugs>stats(p)

model bino;

const

 N = 110; # number of observations

var

K[N],Y[N],p;

data K,Y in "vol1/bino/bino.dat";

inits in "vol1/bino/bino.in";

{

 p ~ dbeta(10,90);

 for (i in 1:N) {

 K[i] ~ dbin(p ,Y[i]);

 }

}

 20

 mean sd 2.5% : 97.5% CI median sample

 1.219E-1 4.174E-3 1.136E-1 1.298E-1 1.220E-1 1000

Bugs>update(10000)

 time for 10000 updates was 00:00:00

Bugs>stats(p)

 mean sd 2.5% : 97.5% CI median sample

 1.220E-1 4.162E-3 1.140E-1 1.303E-1 1.220E-1 11000

The sample output is simply a list of values for p, starting at sample 501 because that is when we started

recording data from the chain:

501 1.21288E-1

502 1.24131E-1

503 1.24431E-1

504 1.26233E-1

505 1.27563E-1

506 1.14140E-1

507 1.19549E-1

508 1.24497E-1

509 1.20018E-1

510 1.19420E-1

511 1.26276E-1

512 1.18542E-1

513 1.27141E-1

514 1.20705E-1

etc.

3.2.3. YADAS Solution
The binomial example in YADAS is similar, though more complicated to specify. There is an input java

class file. We will not copy the entire file, but shown below is the heart of the update procedure using the

YADAS java classes:

 21

There are several ways to specify the inputs for this example in YADAS. We consulted Dr. Todd Graves,

the author of YADAS at Los Alamos, about this. He suggested that most concise formulation is best:

1

x|y|ymss|alpha|beta|n|ni

r|r|r|r|r|r|i

13|0.1|0.5|10|90|110|111

In this input file, the first line represents the number of data samples. Here, we have taken the 110 data

points and assumed that we essentially have one piece of information from it: that there were 13 failures

in 110 samples. The second line represents all of the variables in this problem: x(number of failures),

y(probability of failure), ymss(standard deviation of the Gaussian distribution used to generate proposals

using a random walk Markov chain Monte Carlo method), alpha and beta (parameters of the beta

distribution governing the failure probability), and n and ni, the number of trials and the number of

trials+1. The third line specifies the variable types: x is a real (r), y is a real, ni is an integer, etc. The

fourth line provides the actual data for these variables: x = 13, y =0.1 (initial estimate), ymss = 0.5, alpha

= 10, beta = 90, n = 110.

YADAS does not produce output statistics on the sampling distribution generated, but it does output the

number of samples accepted from the proposal distribution in the Markov chain generation. Since we

want to keep the acceptance probability around 50% for a one-dimensional problem, we had to play with

ymss quite a bit to get this to work out correctly. Also, we had to change y from a regular MCMC

parameter to a Logit MCMC parameter (defined between 0 and 1) to get the sampling to work better. The

MCMCParameter[] paramarray = new MCMCParameter[]

 {

 x = new MCMCParameter (d.r("x"), d.r(1.0), direc + "x"),

 y = new LogitMCMCParameter (d.r("y"), d.r("ymss"), direc + "y"),

 };

MCMCBond betabond, binomialbond;

 ArrayList bondlist = new ArrayList ();

 // y ~ Beta(a,b) and x ~ Binomial (n, y).

 bondlist.add (betabond = new BasicMCMCBond

 (new MCMCParameter[] { y },

 new ArgumentMaker[] {

 new IdentityArgument (0),

 new ConstantArgument (d.r("alpha")),

 new ConstantArgument (d.r("beta")) },

 new Beta ()));

 bondlist.add (binomialbond = new BasicMCMCBond

 (new MCMCParameter[] { x, y },

 new ArgumentMaker[] {

 new IdentityArgument (0),

 new ConstantArgument (d.r("n")),

 new IdentityArgument (1) },

 new Binomial ()));

 22

advantage of YADAS is that you can do this (in BUGS you have no control over parameters governing

the performance of the MCMC) but the disadvantage is that the formulations are more complex and

require greater understanding to use.

As an example output, the acceptance statistics when we ran a 1000 sample Markov chain in YADAS

were:

java BBEx 1000

0

Update 0: 0:474

This means that 474 out of the 1000 samples were accepted. The output samples from YADAS look like:

0.1

0.1

0.1

0.1

0.1

0.1

0.09

0.084

0.091

0.091

0.091

0.093

0.093

0.093

0.093

0.13

0.13

etc.

As a final analysis of this failure probability estimation problem, we compared the sample distribution of

p generated by the BUGS software (which is based on Gibbs MCMC) and that generated by YADAS. To

make a fair comparison, we looked at 10000 samples from each, generated after a 500-sample

initialization phase. The results are shown in Figure 6. Note that in Figure 6, only 2000 of the 10000

samples are plotted to make the graph readable, but the pattern holds over the full 10000 samples.

The posterior distribution of p generated by YADAS clearly has a much larger variance than the posterior

distribution generated by BUGS: 4.5E-4 vs 1.7E-5. Also, the means are different: 0.109 vs. 0.122. At

this point, our suspicion is that the reason the variance is larger may be due to the fact that we aggregated

the data in YADAS into “one” piece of failure information: 13 failures in 110 trials. We tried to get

YADAS to parse the input in blocks of 10 trials (so there are 11 overall data points, each one the number

of failures in 10 samples), but it treated each block of 10 samples as an individual process and created 11

Markov Chains. We did run YADAS with a larger step size (in which case the acceptance probability

dropped to 28%) and a smaller step size (in which case the acceptance probability rose to 90%) but in

both cases, the variance was nearly the same as the case in Figure 6, and the posterior data had

significantly more spread than the BUGS output.

 23

Markov Chain for posterior distribution of p

(Probability of Failure in Binomial Model)

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500
1

1
4
6

2
9
1

4
3
6

5
8
1

7
2
6

8
7
1

1
0
1
6

1
1
6
1

1
3
0
6

1
4
5
1

1
5
9
6

1
7
4
1

1
8
8
6

YADAS Output

BUGS Output

Figure 6. Comparison of YADAS and BUGS output

In summary, Bayesian methods have been used for estimation of failure probabilities in binomial failure

models. If the prior distribution on the failure probability is specified with a beta distribution, the

posterior can be determined analytically, with the beta parameters being updated by the number of

failures/number of trials in the new data set. Thus, the MCMC sampling methods are not necessarily

needed in the Bayesian reliability application. We discussed them above to provide comparison with the

analytic results. The reliability application would be ideal in a situation where data on failures is

continually being gathered over time.

 24

3.3. Bayesian Regression

Bayesian regression is of interest to us because of the wide use of surrogates to approximate expensive

computer simulations. The idea is to assume a prior on the coefficients of the regression equation, then

update the prior with data.

The classical linear regression model is E[yi| β,X]= β0+β1Xi1+…+βkXik, where i = 1….n for n observed

values of k independent X variables. In ordinary linear regression, we assume the conditional variances

are equal: var(yi| θ, X) = σ2
. The parameter vector we are trying to estimate is: θ = (ββββ,σ2

) = (β0, β1X1, …

,βk, σ
2
). The key assumption in a Bayesian formulation of classical regression is that there is a

distribution on θ, and that the posterior distribution of θ is given by: p(θ|X,y)∝ p(θ)p(y|X, θ).[Gelman et.

al, 1996] For most situations, it is assumed that the X values are known (they are chosen in the

experiment), thus their probability distribution is known and fixed: it is not something that is updated.

Also, in most formulations, the dependency on X is suppressed in the notation and just assumed. So the

posterior distribution is written simply as: p(θ|y)∝ p(θ)p(y|θ).

A standard noninformative prior that is used is one that is uniform on θ. This is equivalent to being

uniform on (ββββ, log σ) and is expressed as p(ββββ,σ2
|X) ∝ σ-2

. With this prior, the conditional posterior of ββββ

given σ2
 is normal:)V,β̂(~Y,|β 2

β

2 σσ N . The estimate of ββββ is the same as that given in classical

linear regression:

YXX)(Xβ̂ T1T −= . The variance term is given by:
1TX)(XV −=β . The marginal posterior density of

σ2
given the data is an inverse χ2

distribution: σ2
 | y ~ inverse χ2

 (n-k, s
2
), where s

2
is the standard non-

Bayesian estimate of σ2
 obtained in classical regression:)ˆX-(Y)ˆX-(Y

1
s T2 ββ

kn −
= . Thus, the

Bayesian estimates for the mean of ββββ and for σ2
are the same as those obtained by classical regression, but

these parameters have posterior distribution in the Bayesian framework as opposed to point estimates in

the classical framework.

To compute the posterior distribution p(ββββ,σ2
|Y), first one calculates β̂ , βV , and s

2
from the matrix

formulas given above. Then, using s
2
, one draws σ2

from the inverse χ2
distribution. Finally, given

β̂ , βV , and σ2
, one draws a sample value from the posterior distribution)V,β̂(~Y),|(β 2

β

2 σσ N .

Most standard linear regression packages can perform the estimation of β̂ , βV , and s
2
. In terms of

prediction, one wants to predict the outcome y~ given a new set of data X
~

. To obtain the predicted

outcome, one first draws ββββ and σ2
 from their posterior distributions, then draws a predicted outcome

according to:

)I,βX
~

(~y~ 2σN . The mean of this posterior distribution for y~ is β̂X
~

]y,|y~E[2 =σ . This is the same

as the estimate obtained by classical linear regression.

3.3.1. Regression analysis in FirstBayes
FirstBayes only allows a regression using one independent variable and one dependent variable. We

chose to use x1 as the independent variable (denoted by X in the FirstBayes software) and the Rosenbrock

function as Y. The analysis in FirstBayes assumes that Y = alpha + beta * X. Figure 7 below shows that

with a noninformative prior, the posterior distribution of alpha is a t-distribution with mean 475.6. Note

that in FirstBayes, the prior is not allowed to be chosen for the linear regression model: it is only

 25

specified as a “weak” prior as seen on the left side of the screen shot. Figure 8 shows that the posterior

distribution of beta is a t-distribution with a mean of –33.3. A few things to note: these t-distributions

are essentially normals because they have 108 degrees of freedom (110 data points – 2 estimated

regression coefficients). The means of these posterior distributions are the same as the point estimates

that are predicted by classical regression. The comparison can be seen in the regression function

computed in Excel, shown in Figure 9. The estimate of the intercept is 475.6 and the estimate of the

coefficient of X1 is –33.3. The estimate of σ2
 in FirstBayes is a scaled inverse χ2

-distribution with mean

3.424E7, which is the same as the residual sum of squares in the classical regression. Of course this

regression is a very poor fit, as seen by an R
2
 term of nearly zero and the plot of the regression line vs. the

actual function shown in Figure 10.

Figure 7. Posterior Distribution of alpha in a simple linear model in FirstBayes

 26

Figure 8. Posterior Distribution of beta in a simple linear model in FirstBayes

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.066212

R Square 0.004384

Adjusted R Square -0.00483

Standard Error 563.0526

Observations 110

ANOVA

 df SS MS F Significance F

Regression 1 150764.8 150764.8 0.47555639 0.491921086

Residual 108 34239047 317028.2

Total 109 34389812

 CoefficientsStandard Error t Stat P-value Lower 95% Upper 95%

Intercept 475.5867 110.2633 4.313193 3.5721E-05 257.0261154 694.147338

X Variable 1 -33.3015 48.29068 -0.68961 0.49192109 -129.0219345 62.4188469

Figure 9. Classical Regression Results for Rosenbrock’s Function with 1 independent variable

 27

Figure 10. Regression line and confidence bounds for a simple linear model in FirstBayes

3.3.2. Linear Regression in BUGS

We continued the linear example by looking at the results from BUGS. The BUGS software does allow

a Bayesian regression analysis on multiple independent variables. The BUGS formulation for this model

is:

model line;

const

 N = 110; # number of observations

var

 x1[N],x2[N],Y[N],mu[N],alpha,beta1,beta2,tau,sigma;

data x1,x2,Y in "vol1/lin/blin.dat";

inits in "vol1/lin/lin.in";

{

 for (i in 1:N) {

 mu[i] <- alpha + beta1*x1[i] + beta2*x2[i];

 Y[i] ~ dnorm(mu[i],tau);

 }

 alpha ~ dnorm(400.0,1.0E-4);

 beta1 ~ dnorm(-30.0,1.0E-4);

 beta2 ~ dnorm(-220.0,1.0E-4);

 tau ~ dgamma(54,1.33E+7);

 sigma <- 1.0/sqrt(tau);

 }

 28

In this formulation, the expected value of Y (mu) is the sum of the independent parameters times the

regression coefficients alpha, beta1, and beta2. These regression coefficients are distributed as normal

variables. The independent variable Y is distributed as a normal variable with mean equal to mu and

variance equal to tau. According to the posterior distributions in a Bayesian analysis, the predicted value

of y is:)I,βX
~

(~y~ 2σN , where the posterior distribution of the error is: σ2
 | y ~ scaled inverse χ2

 (n-k,

s
2
). The scaled inverse Chi-squared distribution is equivalent to an inverse gamma distribution according

to the following transformation: if σ2
 ~ scaled inverse χ2

 (n-k, s
2
), then σ2

 ~ inverse gamma ((n-k)/2, (n-

k)*s
2
 /2). Then, if σ2

 ~ inverse gamma, the reciprocal, 1/σ2
 ~ gamma((n-k)/2, (n-k)*s

2
 /2). Thus, we see

in the last line that sigma is 1/sqrt(tau), where tau is distributed as a gamma distribution. This is a

common transformation in Bayesian analysis: people tend to use the gamma distribution, not the inverse

χ2
.

We first performed a classical regression analysis on this problem with the two independent variables x1

and x2. The results are shown in Figure 11:

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.475545

R Square 0.226143

Adjusted R Square 0.211678

Standard Error 498.7161

Observations 110

ANOVA

 df SS MS F Significance F

Regression 2 7777016 3888508 15.6342211 1.1E-06

Residual 107 26612796 248717.7

Total 109 34389812

 CoefficientsStandard Error t Stat P-value Lower 95% Upper 95%

Intercept 436.1627 47.80396 9.123986 4.8892E-15 341.3968 530.9285

X Variable 1 -31.6632 42.77383 -0.74025 0.4607712 -116.457 53.13098

X Variable 2 -227.837 41.14549 -5.53735 2.2122E-07 -309.403 -146.271

Figure 11. Classical Regression Results for Linear Model of Rosenbrock’s function

The results are still not very good (R
2
value of .22). We tried many combinations in BUGS to get the

updating working right. We did not get good results unless we used the information produced above in

the classical analysis. Thus, we assumed a value of 400 as a prior mean for alpha (the exact value of the

intercept is 436 in classical regression), a value of –30 for the coefficient of x1, and a value of –220 for the

coefficient of x2. The variance terms need some explanation. The estimate of σ2
 in classical regression is

s
2
, where s

2
 is the sum of squares of the residuals divided by the number of degrees of freedom (in this

case, 108). Thus, s
2
 in this example is 26612796/108 = 246414.8, and the square root of this term is the

estimate of σ. In this case, the estimate of σ is 496.4. Recall that the BUGS formulation requires the

transformation to a gamma distribution with parameters ((n-k)/2, (n-k)*s
2
 /2). In this case, (n-k)/2 is 54,

and 54* s
2
 = 1.33E7 which is the second parameter of the gamma distribution. That is why the input

specification portion of the input file looks like:

 29

 alpha ~ dnorm(400.0,1.0E-4);

 beta1 ~ dnorm(-30.0,1.0E-4);

 beta2 ~ dnorm(-220.0,1.0E-4);

 tau ~ dgamma(54,1.33E+7);

 sigma <- 1.0/sqrt(tau);

With these inputs, we ran 500 updates to initialize the Markov chain (this is the number recommended as

the standard initialization in BUGS), then we ran the chain out for 10000 more updates. The summary

statistics on the posterior distributions are given below:

 update(10000)

 time for 10000 updates was 00:00:01

Bugs>stats(alpha)

 mean sd 2.5% : 97.5% CI median sample

 4.298E+2 4.276E+1 3.468E+2 5.129E+2 4.299E+2 10000

Bugs>stats(beta1)

 mean sd 2.5% : 97.5% CI median sample

 -3.181E+1 3.921E+1 -1.085E+2 4.391E+1 -3.169E+1 10000

Bugs>stats(beta2)

 mean sd 2.5% : 97.5% CI median sample

 -2.265E+2 3.777E+1 -3.007E+2 -1.523E+2 -2.263E+2 10000

Bugs>stats(tau)

 mean sd 2.5% : 97.5% CI median sample

 4.044E-6 3.925E-7 3.311E-6 4.844E-6 4.029E-6 10000

Bugs>stats(sigma)

 mean sd 2.5% : 97.5% CI median sample

 4.990E+2 2.436E+1 4.543E+2 5.495E+2 4.982E+2 10000

The mean posterior estimates of the parameters are reasonably close to the estimates obtained by classical

regression, which is we expect from the derivations outlined above. The confidence intervals on these

parameters are large: for example the intercept alpha has a 95% confidence interval of 346.8 to 512.9,

and the 95% CI for the beta1 parameter (coefficient of x1) is from –108.5 to 43.9. These large

confidence intervals are due to the variability in the data and the poor linear fit, since the prior variances

on these distributions were small (1E-4). Also, note that the posterior estimate of sigma is 499, which is

very close to the classical estimate of 496.4.

If we start BUGS with a “dumb” estimate of the parameters as normals centered on one, such as the

following input specification, the results are a lot worse:

Input file:

{

 for (i in 1:N) {

 mu[i] <- alpha + beta1*x1[i] + beta2*x2[i];

 Y[i] ~ dnorm(mu[i],tau);

 }

 alpha ~ dnorm(1.0,1.0E-2);

 beta1 ~ dnorm(1.0,1.0E-2);

 beta2 ~ dnorm(1.0,1.0E-2);

 tau ~ dgamma(1.0,1.0);

 sigma <- 1.0/sqrt(tau); }

 30

Output statistics:

Bugs>stats(alpha)

 mean sd 2.5% : 97.5% CI median sample

 1.057E+1 9.808E+0 -8.408E+0 2.991E+1 1.059E+1 10000

Bugs>stats(beta1)

 mean sd 2.5% : 97.5% CI median sample

 -1.506E-2 9.786E+0 -1.951E+1 1.909E+1 1.072E-1 10000

Bugs>stats(beta2)

 mean sd 2.5% : 97.5% CI median sample

 -5.104E+0 9.859E+0 -2.427E+1 1.412E+1 -5.082E+0 10000

Bugs>stats(tau)

 mean sd 2.5% : 97.5% CI median sample

 2.166E-6 2.939E-7 1.627E-6 2.780E-6 2.149E-6 10000

Bugs>stats(sigma)

 mean sd 2.5% : 97.5% CI median sample

 6.842E+2 4.689E+1 5.997E+2 7.840E+2 6.821E+2 10000

In this case, the posterior estimates have not converged to their “true” estimates even after 10000

iterations of the Markov chain, where “true” refers to those predicted by derivation (namely, the means of

these parameter distributions should be equal to the classical regression estimates). This shows the

importance of getting very good prior estimates.

We extended the linear model to allow for three additional terms: x1 x2 and x1
2
 and x2.

2

The classical regression results are shown in Figure 12. As expected, R
2
 is getting better (up to nearly

70%!)

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.831785

R Square 0.691867

Adjusted R Square 0.677053

Standard Error 319.2034

Observations 110

ANOVA

 df SS MS F Significance F

Regression 5 23793167 4758633 46.70326 4.42316E-25

Residual 104 10596645 101890.8

Total 109 34389812

 CoefficientsStandard Error t Stat P-value Lower 95% Upper 95%

Intercept -91.8079 58.19001 -1.57773 0.117666 -207.2007224 23.5849266

x1 -21.4352 27.54554 -0.77817 0.438235 -76.05892254 33.1886104

x2 -229.535 26.46961 -8.67164 6.14E-14 -282.0252323 -177.0449

x1x2 -10.5518 24.56796 -0.4295 0.668452 -59.27094267 38.1673093

x1^2 311.563 25.62508 12.15852 1.08E-21 260.7475695 362.378416

x2^2 106.1224 26.54916 3.997204 0.00012 53.47449247 158.770307

Figure 12. Classical Regression Results for Quadratic Model of Rosenbrock’s Function

 31

The input file for BUGS becomes:

model line;

const

 N = 110; # number of observations

var

 x1[N],x2[N],x12[N],x1sq[N],x2sq[N],Y[N],mu[N],alpha,beta1,beta2,beta12,beta1sq,beta2sq,tau,sigma;

data x1,x2,x12,x1sq,x2sq,Y in "vol1/quad/quad.dat";

inits in "vol1/quad/quad.in";

{

 for (i in 1:N) {

 mu[i] <- alpha + beta1*x1[i] + beta2*x2[i] + beta12*x12[i] + beta1sq*x1sq[i] + beta2sq*x2sq[i];

 Y[i] ~ dnorm(mu[i],tau);

 }

 alpha ~ dnorm(-90.0,1.0E-2);

 beta1 ~ dnorm(-20.0,1.0E-2);

 beta2 ~ dnorm(-230.0,1.0E-2);

 beta12 ~ dnorm(-10,1.0E-2);

 beta1sq ~ dnorm(310,1.0E-2);

 beta2sq ~ dnorm(106,1.0E-2);

 tau ~ dgamma(52,5.3E+6);

 sigma <- 1.0/sqrt(tau);

}

The output from BUGS looks very good:

Bugs>update(10000)

 time for 10000 updates was 00:00:02

Bugs>stats(alpha)

 mean sd 2.5% : 97.5% CI median sample

 -8.995E+1 9.684E+0 -1.088E+2 -7.054E+1 -9.023E+1 10000

Bugs>stats(beta1)

 mean sd 2.5% : 97.5% CI median sample

 -2.017E+1 9.417E+0 -3.856E+1 -1.694E+0 -2.025E+1 10000

Bugs>stats(beta2)

 mean sd 2.5% : 97.5% CI median sample

 -2.300E+2 9.197E+0 -2.480E+2 -2.120E+2 -2.299E+2 10000

Bugs>stats(beta12)

 mean sd 2.5% : 97.5% CI median sample

 -1.019E+1 9.265E+0 -2.856E+1 7.855E+0 -1.011E+1 10000

Bugs>stats(beta1sq)

 mean sd 2.5% : 97.5% CI median sample

 3.103E+2 8.693E+0 2.934E+2 3.274E+2 3.102E+2 10000

Bugs>stats(beta2sq)

 mean sd 2.5% : 97.5% CI median sample

 1.059E+2 8.660E+0 8.909E+1 1.228E+2 1.058E+2 10000

Bugs>stats(sigma)

 mean sd 2.5% : 97.5% CI median sample

 3.166E+2 1.534E+1 2.883E+2 3.484E+2 3.160E+2 10000

 32

These posterior parameter estimates have means very close to the classical estimates. Note that the size

of the 95% CI has decreased, probably because of the increase in independent variables. For example, the

95% CI of alpha is –108.8 to –70.5. Also, the estimate of sigma predicted by classical regression is

319.2 and with the Bayesian estimate, the mean of the estimate of sigma is 316.6.

This example demonstrates that it is possible to perform Bayesian estimation of the parameters using

MCMC with a generalized linear model (in this case, a quadratic model) IF one has good estimates of the

priors. We used the classical regression estimates as priors, which are not strictly appropriate since the

classical regression estimates are based on data, and thus we are not strictly separating the prior from the

data. In the cases that we have examined, the Bayesian confidence intervals for the regression

coefficients are larger than those in classical regression, which is to be expected because the Bayesian

estimate accounts not only for uncertainty in the data but also for uncertainty in the regression coefficients

themselves.

3.4. Bayesian Regression Models in Optimization

This section discusses how one might use the posterior distribution of the regression coefficients in an

optimization process. Regression models are often used as surrogate models for expensive computer

simulations. Jin et al. state [2001]: “When using computationally expensive simulation programs in

engineering design, it becomes impractical to rely exclusively on simulation codes for the purpose of

design optimization. A preferable strategy is to utilize approximation models which are often referred to

as metamodels since they provide a ‘model of the model’ to replace the expensive simulation model.”

When using a Bayesian approach to construct the regression metamodel, the user first must specify a prior

on the regression coefficients (or specify a non-informative prior, which is often used), then update the

prior with the data from the expensive simulation runs to obtain a posterior distribution on the

coefficients. This posterior distribution can then be sampled from to obtain samples of posterior

regression models, in the sense of having a “family” or “ensemble” of possible regression functions

according to the posterior distributions. At this point, optimization can be done on the regression models

to compare how the optima of the individual regressions differ, and get a sense of the spread of the optima

across the posterior family of surrogate models.

We constructed an example of generating a Bayesian regression model using data generated as part of

some parameter studies for an earth penetrator, then optimized the posterior regression functions to obtain

the distribution of the optimal designs. This example is not fully realistic: we did not include all the

design parameters or uncertain variables. It is simply meant to illustrate how Bayesian approaches might

be used in engineering design optimization, and more generally, in optimization under uncertainty

(OUU).

We took a partial data set from studies performed as part of the Pen-X earth penetrator design sensitivity

analyses. These parameter studies were done using the three-dimensional explicit transient dynamics

code Presto to model mechanical deformation at impact. Presto is a Lagrangian FEM code. Each run of

the Pen-X penetrator model in Presto is expensive, even in the low-fidelity case.

For the Bayesian regression, we identified three independent variables affecting design performance: L1

(one of the section lengths), IV (impact velocity), and CR (cavity radius). The model exhibits quadratic

behavior with respect to IV and CR, so the full set of variables in the regression was L1, IV, CR, IV
2
, and

CR
2
. The dependent variable that we are trying to predict with the regression (and optimize with respect

 33

to the independent variables) is displacement. Displacement refers to maximum displacement of the

ground due to penetrator impact.

We assumed noninformative priors, and wrote code to solve for the posterior distribution in MATLAB

according to the equations outlined in Section 3.3 and found in Gelman et. al’s book [1995] Note that we

are calculating an analytic form of the posterior distribution on the regression coefficients: we are not

using MCMC methods. We then drew samples from the posterior distribution for the regression

coefficients β (which is a multivariate normal). Based on the sets of sampled coefficients, we constructed

sample realizations of the regression response surface.

Figure 13 shows the posterior realizations of the regression functions. The red lines in Figure 13 are 20

particular realizations of the response surface based on sampling the posterior. The diamonds along the

red lines are points where we actually evaluated the posterior regression functions. We had to do some

manipulation to choose the points being shown so that the regression as a function of 1-D even though it

is a function of 3 independent vars (L1,IV, and CR) plus the squared terms. The black Xs show the

optimal solution of each posterior regression model. Note that the posterior family is quite wide, and the

optimal solution distribution is fairly wide - from a value of 12.4 to 13.6 (this translates to 12,400 ft/sec to

13,600 ft/sec in terms of optimal value of impact velocity to maximize displacement).

Figure 13. Example of Bayesian Quadratic Regression used in Optimization

At this point, we are examining the idea of many realizations of a regression surface in an optimization

framework. In a trust region approach, generating posterior realizations offers many possibilities:

• We could generate a family of posterior regression models in the first trust region, then follow

each of these initial optima through the rest of the optimization process.

 34

• We could generate one posterior distribution of the entire space and not allow shrinkage (non-

windowed trust region model), but update that posterior as additional points are taken.

• We could generate the posterior distributions and families of optima in each trust region. This is

probably too expensive, even if the optimization is done on a regression model.

At this point, we are also considering how to incorporate the Bayesian regression models into an

Optimization under Uncertainty (OUU) framework.

3.5. Bayesian Methods in Optimization
The previous section discussed Bayesian methods in optimization focused on regression models. This

section discusses the application of Bayesian methods to more general optimization problems. In the

evolutionary algorithms community, there has been interest in using Bayesian methods to help generate a

probability distribution on which “genes” in the solution chromosome should be selected. For example,

Pelikan et al. [1999], Pelikan et al. [2000] describe how they estimate a probability distribution on

promising solutions in order to generate new candidate solutions in a genetic algorithm. They use a

Bayesian network to model a multivariate probability distribution which is updated as new solution

candidates are generated and evaluated (thus producing new data on the fitness landscape). In general,

we think that the idea of combining a Bayesian network which encodes relationships between variables in

a problem and updating the probability distribution governing that relationship to use in generating the

next set of candidate solutions for an optimization technique is very useful. However, evolutionary

algorithms in general are too expensive (in terms of number of function evaluations needed) for our needs

in design optimization. Thus, we have not pursued this area of Bayesian optimization at this time.

Another optimization area of interest to us is robust design. There was a renewed in Taguchi’s work in

the statistics community during the mid-1990s. Taguchi had the idea that products lack high quality

because of inconsistency in performance, one tries to choose values of control variables that result in a

process that is robust or insensitive to environmental variation. Taguchi’s approach separated the control

variables (what we think of as design variables) from the noise variables (what we think of as uncertain

variables) and developed separate experimental designs for each of these. The work in the mid-1990s

[Vining and Myers, 1990; Khattree, 1996; Myers et al. 1997] focused on treating both the control

variables and the noise variables in a combined array, so that one does not need a separate design of

experiments for each. This results in an experimental design that is simpler to execute and avoids biases

that appear in main effects estimates due to interactions that are ignored when the design is highly

fractionated.

After the data from the experimental design runs is collected, regression is used to analyze the interaction

terms between the noise and control variables. Preliminary findings using the low-fidelity data from the

penetrator model suggests that the interaction terms are very small, meaning that the process variance

generated from the noise variables is constant and there is no opportunity for reducing the variance by a

choice of the control variables. This is an important point: if indeed there are no interaction terms, we

have to incorporate the uncertainty in the noise variables but it will have a “constant” effect on the results

which cannot be improved by a choice of the design variables. In this case, “robust” design will not be

possible, at least in terms of what robust design means in the statistical community. We believe that

higher fidelity models will reveal more interaction terms and more opportunity for using ideas from

robust design.

The Bayesian approach to robust design optimization is as follows [Peterson, 2000; Miro-Quesado et al.,

2002]: maximize the posterior predictive probability that the process satisfies a set of constraints on the

 35

responses. The twist on a standard Bayesian analysis is that the predictive density is integrated not only

with respect to the response variables, but also with respect to the noise variables.

Overall, it is important to note that we did not find a Bayesian approach to “classical” optimization

methods such as Newton’s method, etc. The Bayesian approach used in evolutionary algorithms has

much potential, but not for our class of problems. The robust design approach has direct relevance to

engineering design, but it is not clear at this point how much a Bayesian approach will augment what can

be done with the statistical approach of performing combined noise/control variable experiments to

understand interactions. Finally, we briefly mention that surrogate methods are often used in conjunction

with Bayesian methods because the surrogates are much cheaper to evaluate when one needs to take tens

of thousands of samples to obtain a posterior. The next section discusses a common surrogate method

used, Gaussian processes. We have seen Gaussian process models used primarily to characterize the

space and make predictions about function values at new input points, but it is certainly possible to use

them additionally in optimization. This is topic of future research interest.

4. Application to Engineering Problems II

In Section 3, we discussed the application of a Bayesian approach to two problems: reliability estimation

and regression. This section discusses the application of Bayesian analysis to Gaussian process models.

There has been a surge of interest in Gaussian process models over the past ten years. They are often

used as surrogates or emulators for noisy engineering functions because of their ability to capture the

local behavior of the system response. Once the parameters governing the Gaussian process are

determined, they can be used for optimization or sensitivity analysis because the Gaussian process

estimates of system response are computationally cheap to compute.

We present the use of a Gaussian process model as an emulator for a function, and then we discuss two

applications of interest: calibration under uncertainty, and multi-fidelity models.

4.1. Gaussian Processes
Gaussian Process models are used in response surface modeling, especially response surfaces which

“emulate” complex computer codes. Gaussian processes have also been widely used for estimation and

prediction in geostatistics and similar spatial statistics applications [Cressie]. Much of this material has

been drawn from the work of three experts: Radford Neal and Carl Rasmussen at the University of

Toronto, and Chris Williams at Edinburgh University. Several of their web sites and technical reports are

listed in the references.

A Gaussian process is defined as follows [Williams]: A stochastic process is a collection of random

variables {Y(x) | x∈X} indexed by a set X (in most cases, X is ℜd
, where d is the number of inputs). The

stochastic process is defined by giving the joint probability distribution for every finite subset of variables

Y(x1), ..Y(xk). A Gaussian process is a stochastic process for which any finite set of Y-variables has a

joint multivariate Gaussian distribution. A GP is fully specified by its mean function µ(x) = E[Y(x)] and

its covariance function C(x, x′). The basic steps in defining/using a GP are:

1. Define the mean function. The mean function can be any type of function. Often the mean is

taken to be zero, but this is not necessary. A common representation, for example in a regression

model, is that y(x) = ∑j wjφj(x) = w
Tφφφφ(x), where {φj} is a set of fixed basis functions and w is a

vector of weights. Combining Gaussian process and a Bayesian approach, one places a prior

probability distribution over possible functions and lets the observed data transform the prior into

a posterior.

 36

2. Define the covariance. There are many different types of covariance functions that can be used.

At this stage, we shall focus on stationary covariance functions where C(x, x′) is a function of x-

x′ and is invariant to shifts of the origin in the input space. A commonly-used covariance

function is:

})'(exp{)',(
1

22∑
=

−−=
d

u

uuuovC xxxx ρ

This covariance function involves the product of d squared-exponential covariance functions with

different lengthscales on each dimension. The form of this covariance function captures the idea

that nearby inputs have highly correlated outputs.

3. Perform the “prediction” calculations. Given a set of n input data points {x1, x2, .. xn} and a set

of associated observed responses or “targets” {z1, z2, .. zn}, we use the GP to predict the target

zn+1 at a new set of inputs xn+1. The target is usually represented as the sum of the “true”

response, y, plus an error term: zi = yi + εi, where εi is a zero mean Gaussian random variable

with constant variance σ2
ε. We assume that the prior distribution on the yi’s is given by a GP

defined as Y ~ N(0,K), where K is the n×n covariance matrix with entries Kij = C(xi, xj). Then

the prior distribution on the targets zi is N(0,K+σ2
εIn). The distribution of the predicted term zn+1

is conditional on the data {z1, z2, .. zn}. It is Gaussian with the following mean and variance:

 E[zn+1 | z1, z2, .. zn] = k
T
C

-1
z

Var[zn+1 | z1,…, zn] = C(xn+1, xn+1) - k
T
C

-1
k

where k

is the vector of covariance between the n known targets and the new n+1 data point: k =

(C(x1, xn+1), ….. C(xn, xn+1)
 T
, C is the n * n covariance matrix of the original data, and z is the

n*1 vector of target values.

The equations for the mean and variance of the predictive distribution for zn+1 both require the

inversion of C, an n×n matrix. In general, this is a O(n
3
) operation. Neal (1997) and Williams

(2002) claim that this is feasible on modern computers when n is the order of a few hundred, but

that it becomes computationally expensive when n is larger than 1000.

4. Use Monte Carlo Markov Chain (MCMC) sampling to generate posterior distributions on the

hyperparameters which govern the covariance function (and the mean function). A common

approach in GP is to assume all GPs are zero mean, so the Bayesian updating only involves

hyperparameters governing the covariance function. Since these may be quite complex, one

usually still needs a MCMC sampling method to generate the posterior. For example, Neal

assumes the ρ2
terms in the covariance function are distributed as gamma distributions (which

themselves are governed by three parameters), so one needs to calculate/update these three

parameters for every ρ2
term.

We examined two existing, public domain codes which have capabilities for Gaussian process models,

predictions from GPs, and MCMC to generate the posteriors on the hyperparameters.

The first code is called Netlab, which is a collection of Matlab M-files [Nabney and Bishop]. In addition

to Gaussian processes, this code also has capabilities focused on pattern recognition/classification: it has

functions for Principal Component Analysis, K-means clustering, self-organizing maps, multi-layer

perception networks, radial basis function networks, some optimization algorithms, and MCMC methods.

The second code is Radford Neal’s FBM, Flexible Bayesian Modeling. This code is written in C and

command line driven. It has a lot of capabilities: Bayesian regression and classification models based on

neural nets or Gaussian processes, Monte Carlo Markov Chain sampling, and clustering methods using

mixture models. The documentation is reasonable but somewhat cryptic. Specifically, the formulation

 37

of the hyperparameters and the specification of the MCMC are not intuitive at all. It is very difficult to

understand what is driving the output results.

4.1.1. Gaussian Process Model of the Rosenbrock function

We ran the FBM and Netlab codes with the Rosenbrock function to see how difficult it was to formulate a

GP in these codes, what the outputs look like, etc. From our earlier work looking at Bayesian

applications on the Rosenbrock function, we have a data set of 110 output values based on sample values

over the input space 2,2 21 ≤≤− xx .

Our data set, then, looked initially like this:

 X1 X2 Rosenbrock fn. value

-0.9275 -0.8922 310.8349

1.6726 -0.3028 961.7705

0.1565 0.9491 86.2010

-1.3489 1.6003 10.3279

-1.8911 -1.4831 2567.8868

-0.2727 -0.4198 26.0397

-0.7271 0.7687 8.7475

0.5548 0.3538 0.4098

1.2691 1.2266 14.8165

1.1261 -1.6565 855.2737

0 0 1.00000

 …..

However, we found that when trying to formulate a Gaussian process with the “target” data equal to the

third column in the dataset above, the inverse of the covariance matrix was extremely ill-conditioned and

could not be calculated. So, we tried some transformations. Subtracting the mean from the output data

values to create a zero-mean data set was not sufficient: we needed to divide by the standard deviation to

create (loosely speaking) a normal (0,1) distribution. Our final data set thus looked like:

 X1 X2 Normalized Rosenbrock fn. value

-0.9275 -0.8922 -0.17507

1.6726 -0.3028 0.983807

0.1565 0.9491 -0.57499

-1.3489 1.6003 -0.71007

-1.8911 -1.4831 3.84321

-0.2727 -0.4198 -0.68209

-0.7271 0.7687 -0.71288

0.5548 0.3538 -0.72772

1.2691 1.2266 -0.70208

1.1261 -1.6565 0.794208

0 0 -0.72667

Note that we have not seen any restriction in theory on the form of the output in the GP literature (and

normalizing the output should not change the raw correlations between points). However, performing this

transformation did allow for the covariance matrix inversion. Note that with the full dataset of 110

points, the covariance matrix with this transformed output data is very ill-conditioned: the ratio of the

largest to smallest eigenvalue is 10
16
. This brings into question the “goodness” of the predictions.

 38

We found that the covariance matrix inversion performed much better on smaller data sets, with only 10

or 20 input points. Intuitively, it seems wrong: more data should always be better in terms of creating a

response model or performing prediction. But if points are close together in the input space, the resulting

covariance matrix can have rows that are nearly dependent, and the inversion falls apart. Neal explains

the problem as: “Roughly speaking, the covariances between neighboring training cases are so high that

knowing all but one function value is enough to determine the remaining function value to a precision

comparable to the level of round-off error.”

There are a couple of ways to rectify this problem. One way is to perform a singular value decomposition

on the covariance matrix and remove eigenvalues less than a certain threshold. Andrew Booker of

Boeing has proposed an alternative approach to the problem of ill-conditioning [Booker]. He takes a

small set of data points and uses it to estimate a “primary” Gaussian process. He then fixes the

parameters of this first GP, and calculates a second GP for a “finer” correlation structure on the remainder

of the data points. Booker uses a Gaussian correlation function for the primary GP, but he uses a cubic

spline correlation function for the second GP. Booker claims that the resulting response model given by

the sum of these two GPs is much “better” than a standard GP, at least in the context of optimization: the

two GP approach resulted in many fewer function evaluations in a surrogate-based optimization

comparison. Another way is to perform an adaptive partitioning of the space, and find different sets of

covariance parameters which govern local regions of the space [Lee, Gramacy, and Macready].

4.1.2. Netlab implementation of Gaussian Processes

Below are two graphs showing the Gaussian process output vs. one input, X1, for the Rosenbrock

function. Figure 14 is based on 11 input points, while Figure 15 is based on 110 points. These plots were

generated using the Netlab software. A few comments: the prediction intervals (based on the covariance

matrix) are able to be calculated in the case of 11 input points, but not in the case of 110 input points

because the computed inverse of the covariance matrix has negative values.

Ros.

Fn.

Normalized

Value

X1

Figure 14. Gaussian Process for Rosenbrock Function based on 11 input points

 39

-2. -1.5 -1 -0.5 0 0.5 1.0 1.5 2

X1

Ros. Fn.

Normalized

Value

Figure 15. Gaussian Process for Rosenbrock Function based on 110 input points

Both software packages require a bit of manipulation to obtain the actual parameters governing the GP.

In Netlab, the output looks like:

 net =

 type: 'gp'
 nin: 2

 nout: 1
 bias: -1.5269

 min_noise: 1.4901e-08
 noise: -5.7542
 inweights: [-0.1884 -2.8436]

 covar_fn: 'sqexp'

 fpar: 2.0028

 nwts: 5
 tr_in: [11x2 double]

 tr_targets: [11x1 double]

The fields in governing a Gaussian Process NET are:
 type = 'gp'

 nin = number of inputs

 nout = number of outputs: always 1
 nwts = total number of weights and covariance function parameters

 bias = logarithm of constant offset in covariance function

 noise = logarithm of output noise variance

 inweights = logarithm of inverse length scale for each input

 40

 covarfn = string describing the covariance function:

 'sqexp'

 'ratquad'

 fpar = covariance function specific parameters (1 for squared

exponential, 2 for rational quadratic)

 trin = training input data (initially empty)

 trtargets = training target data (initially empty)

Note that for this example, there are five parameters (nwts): the bias, the noise, the inverse

length scale for X1 and X2 in the covariance parameter, and a covariance parameter fpar that

gets updated. The updating of the posterior distributions in Netlab is not done with a Bayesian

approach, rather it is done with a conjugate gradient method which maximizes the likelihood of

the data given the hyperparameters.

The basic steps to generating a Gaussian process, updating the parameters, then using it for

prediction in Netlab are: define the GP by defining a “NET” with parameters listed above,

initialize the priors, optimize the net (get posterior estimates of the parameters), calculated the

covariance/inverse covariance matrix, defined the set of Xtest values for which you want

predictions, do a “forward” propagation given the GP structure and hyperparameters to calculate

an estimated Ytest vector for the Xtest inputs (along with prediction intervals), graph the original

data and the predictions.

One feature that is very nice in Netlab is that one can see the matrix manipulations and

covariance calculations at each stage. Hybrid MCMC can be used for a Bayesian updating of the

parameters vs. a max likelihood optimization, though we haven’t done that yet.

4.1.3. FBM Implementation of Gaussian Processes

The FBM, Flexible Bayes Modeling software, has many of the same capabilities as Netlab. The

output defining the GP is much more cryptic:

GAUSSIAN PROCESS IN FILE "lin2.gp" WITH INDEX 100

HYPERPARAMETERS

Constant part:

 10.00

Exponential parts:

 8.826

 0.314 : 0.314 0.314

Noise levels:

 0.015 : 0.015

In this output, the constant part of the covariance is listed followed by the exponential part and

the noise levels. All of the parameters (with the exception of the constant term) are given with

gamma functions as priors, according to Neal’s explanation: “if θ is a hyperparameter, then φ =

 41

θ-2
 can be given a gamma prior with density:)2/(12/

2/

)2/(

)2/(
)(ωφαα

α

φ
α

ωα
φ −−

Γ
= ep .” However, this

gamma density has two hyperparameters associated with it (α is a positive shape parameter and

ω is the mean of φ). It is not clear what the software is reporting, for example, when it reports

8.826 as the parameter governing the covariance distribution (is it φ, θ,
, α, or ω)? Also, the three

parameters below 8.826 (three values all equal to 0.314) are “relevance parameters.” Originally

we had thought these were lengthscale parameters, but Neal specifies that they “control the

amount by which the input has to change to produce a change in the non-linear component of the

function that is comparable to the overall scale over which this component varies.”

Neal strongly advocates the use of hybrid MCMC methods to generate the posterior distribution.

Neal claims that a standard MCMC approach will lead to inefficient random walks over the

posterior distribution space. The hybrid approach suppresses part of the “random walk” aspect

of MCMC by introducing “momentum” variables that are associated with “position variables”

that are the focus of interest (for example, the hyperparameters governing the covariance

function). The momentum variables cause the particle to continue in a consistent direction until

such time as a region of high energy (low probability) is encountered. At that point, the position

“leapfrogs” to another state. This sounds somewhat like simulated annealing within a Markov

chain. One problem with this is that it introduces yet another set of parameters the user must

specify – momentum parameters, stepsizes, windowsizes, etc.

Overall, one can specify a GP model, perform the updating, and make predictions with a few

command lines of input. However, the input specification is very cryptic, and it is difficult to tell

what algorithms or approach is being used without stepping through the code line by line. FBM

does produce output in the form of predicted values for our test cases. Also, the FBM software

has a variety of functions which let the user see the covariance matrix, the eigenvalues of the

covariance matrix, etc.

4.1.4. Prototype SNL Gaussian Process code

To overcome some of the problems with FBM and Netlab, we decided to implement our own

version of a Gaussian process model so that we could fully control the form of the basis and the

covariance functions, the parameters governing those functions, and the methods to obtain the

parameter estimates (Bayesian vs. maximum likelihood, etc.)

The SNL code allows the user to follow the basic steps in generating a Gaussian process:

define the GP, initialize the priors, determine posterior estimates of the parameters, calculate the

covariance/inverse covariance matrix, define the set of X values for which you want predictions,

do a “forward” propagation given the GP structure and hyperparameters to calculate an estimated

Y vector for the X inputs along with prediction intervals. The SNL code is discussed in more

detail in Section 4.2 below.

 42

4.2. Calibration under Uncertainty
The problem of model calibration is often formulated as finding the parameters that minimize the squared

difference between the model-computed data (the predicted data) and the actual experimental data. This

approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is

considered the “true” deterministic representation of reality. While this approach does have utility, it is

far from an accurate mathematical treatment of the true model calibration problem in which both the

computed data and experimental data have error bars. We call this approach Calibration under

Uncertainty (CUU).

Recent research in the Bayesian statistics community has yielded advances in formal statistical methods

that address Calibration under Uncertainty. One approach is that of Kennedy and O’Hagan (2001),

hereafter referred to as KOH. They formulate a model for calibration data that includes an experimental

error term (similar to standard regression) and a model discrepancy term, with a Gaussian process chosen

to model the discrepancy. They then use a Bayesian approach to update the statistical parameters

associated with the discrepancy term and with the model parameters. The purpose of updating is

generally to reduce uncertainty in the parameters through the application of additional information.

Reduced uncertainty increases the predictive content of the calibration, or that is the expectation.

We wish to emphasize the difference between calibration and validation. Calibration of a computational

model is adjusting a set of model parameters associated so that we maximize the model agreement with a

set of experimental data (or, in certain cases, a set of numerical benchmarks). Validation of a

computational model is quantifying our belief in the predictive capability of a computational model

through comparison with a set of experimental data. Uncertainty in both the data and the model is critical

and must be mathematically understood to do both calibration and validation correctly [Trucano et al.,

2006].

CUU is therefore a progression of thought that leads to an overlap of the concepts of calibration and

validation. For example, the formalism discussed below of incorporating model uncertainty in Bayesian

calibration procedures through the model discrepancy term, δ(x), is directly relevant to validation. In
validation, we seek to quantify the discrepancy term by comparisons with experiments. From the

validation perspective, it is natural to expect that δ(x) is a random process of some type [Trucano et al.,

2001]. The Gaussian process characterization of the model discrepancy discussed above seems to us to be

useful in validation as well as calibration.

4.2.1. Gaussian Process of Model Discrepancy

KOH assume that the calibration inputs are supposed to take fixed but unknown values θθθθ = (θ1…θq2). The

output of the computer model when the variable inputs are given values x = (x1, x2, ….xq1) and when the

calibration inputs are given values t = (t1, t2, ….tq2) is denoted by η(x,t). KOH differentiate between the

unknown value θθθθ of the calibration inputs which we wish to determine (calibrate) and a known particular

set of their values, t, which we set as inputs when running the model. The “true” value of the real

process when the variable inputs take value x by ζ(x). The code outputs from N runs of the computer

code are represented as yj = η(xj,tj). The observed data (consisting of n points, where n < N usually) is

denoted as z = (z1, z2, ….zn)
 T
. In KOH’s formulation, they represent the relationship between the

observations, the true process, and the computer model output by the equation:

Zi = ζ(xi) + ei = ρ η(xi,ti) + δ(xi) + ei

where ei is the observation error for the i
th
 observation, ρ is an unknown regression parameter, and δ(x) is

a model discrepancy or model inadequacy function that is independent of the code output η(x,t).

 43

A few comments: this is a highly parameterized model, with both the code output η(x,t) and δ(x)
represented as a Gaussian process. The error term ei should include both residual variability as well as

observation error, but KOH do not use replicated points and their model is deterministic, so they do not

strictly address residual variability. They assume that ei is normally distributed as N(0,λ). Assumption of

a constant value of ρ implies that the underlying process ζ(x) is stationary.

 In the approach recommended by KOH, the prior information about η(x,t) and δ(x) is given by Gaussian

processes: η(x,t) ~ N(m1(x,t), c1((x,t), (x′,t′))) and δ(x) ~ N(m2(x), c2(x, x′)). KOH assume that the mean

functions are: m1(x,t) = h1(x,t)
Tββββ1 and m2(x) = h2(x)

Tββββ2. If a noninformative prior is assumed,

p(ββββ1ββββ2) ∝∝∝∝ 1. KOH then formulate all of the hyperparameters relating to this problem. They denote (ρ,λ,

ψ) by φ, where they state that ψ represents some “further hyperparameters” relating to the covariance

functions. Finally, KOH assume that the prior distribution takes the form:

p(θθθθ,ββββ,φ) = p(θθθθ)p(φ)

because of the weak prior distribution on ββββ and assumptions of independence.

The details of calculating the full joint posterior distribution p(θθθθ,ββββ,φ|d) are given in KOH; space does not

permit reproducing them here. The important thing to note is that this joint posterior density is a

Gaussian process, with a complex mean and variance structure. The covariance matrix of the posterior

involves four “submatrices” which depend on the correlation structure of the individual Gaussian

processes η(x,t) and δ(x). The posterior distribution is not tractable to calculate analytically. Even with

simplification, it would require a high-dimensional quadrature to integrate p(θθθθ,ββββ,φ|d) over ββββ and φ to

obtain the posterior estimate for the calibration parameters p(θθθθ|d). KOH address this by fixing many of

these parameters and use a two stage process, where they estimate the hyperparameters relating to the

covariance matrix for the model term, c1, separately and before estimating the hyperparameters relating to

the covariance matrix of the discrepancy term, c2.

We are investigating the feasibility of using a GP formulation such as provided by KOH as a practical

calibration method for engineering design problems. Katherine Campbell of LANL has also looked at

KOH’s work with an emphasis on implementation [Campbell, 2002]. She concluded that information

about model quality gained through the formulation of a model discrepancy term could be useful, but that

a user should be careful in situations of limited observational data and “avoid exaggerating the

contribution of the Bayesian updating process.” Higdon et. al [2004] have applied the idea of Gaussian

process modeling in calibration to a number of engineering design problems. Their work is highly

recommended for a better understanding of this subject.

4.2.2. Modification of the Gaussian process model for discrepancy

We implemented a simple version of a Gaussian process model for discrepancy. We start with an

approach similar to KOH, but with some differences. We are going to assume that the experimental data

is equal to some “true” process plus some error, but we assume the true process is equal to code

calculation plus a discrepancy term. Therefore, we only have one GP in our approach and do not use a

GP as a code emulator:

 Experimental data = zi = ζ(xi) + ei = Code Output + δ(xi) + ei

Many of the model discrepancies that we have seen in practice have a linear trend, so we need to use a

Gaussian process with a non-zero mean. Our approach is straightforward:

 44

1. Calculate the model discrepancy as (experimental data – code prediction) for a set of points

which “match” in terms of experimental configuration and computer code configuration. Thus,

δ(xi) = zi - Code Output.

2. Examine the model discrepancy term. Fit a polynomial regression model to the data. This is a

regression where the dependent variable is the model discrepancy and the independent variables

are the independent variables xi. Thus, the mean of the GP is now the regression function: δ(xi)

is distributed normally with a mean = h(x)
Tββββ, where β are the coefficients of the regression terms

h(x). In this example, x is one dimensional, corresponding to time, and so h(x)
T
= [1 x] and ββββ =

[βo, β1].

3. Calculate the mean and variance of the resulting model discrepancy term δ(xi)’, where δ(xi)’ =

δ(xi)- h(x)
Tββββ. The mean of δ(xi)’ should be very close to zero. The estimated variance of δ(xi)’,

σ2
, is what we will use as a prior estimate of the variance of the Gaussian process. Thus, the total

model discrepancy is: δ(xi) = δ(xi)’ + h(x)
Tββββ, where δ(xi)’ ~ N(0, K+σ2

I). The covariance matrix

K has entries K(x,x’):

 })'(exp{)',(
1

2∑
=

−−=
d

u

uuuwK xxxx

4. Define the Gaussian process and estimate its parameters. The GP δ(xi)’ is defined to have mean

zero, variance σ2
, and covariance matrix given by K. To determine the optimal values of the

hyperparameters wu, we used the constrained minimization algorithm given by fmincon in Matlab

to find the parameters which maximizes the log likelihood. The log likelihood is the log of the

likelihood of the data, given the hyperparameters and this Gaussian process model. There is an

analytic form of the log likelihood. For n data points, with the data in vector z, and C as the

covariance matrix = K+σ2
I, the log likelihood is:

 π2log
22

1
detlog

2

1 1 n
zCzCL T −−−= −

We implemented this in Matlab, vectorizing as many of the operations as we could. Figure 15

shows an example of what results are calculated in the process. The red solid line is the original

delta term: δ(xi) = zi - Code Output. The blue solid line is the regression equation fit to δ(xi), and

the green solid line is the difference, δ(xi)’ = δ(xi)- h(x)
Tββββ. The green circles are the GP predicted

points (which go through the δ(xi)’ data exactly, and revert to a zero mean process in the

“prediction zone” where time is greater than 2000 seconds. Finally, the green dotted lines show

the predicted variance of the GP, and the red dashed lines show the mean and 2 sigma limits on

the prediction of the δ(xi) term as it is extrapolated out from 2000 to 3000 seconds. This

example serves to show how the modeling of δ(xi) as a GP may be useful in terms of predicting

model results at new locations, and understanding the confidence limits around those results.

 45

Figure 15. Mean delta vs. time (in 1000s seconds on X-axis), with GP prediction of delta

4.3. High/low fidelity autoregressive models

Many computational models of high physical fidelity are very expensive in terms of run time. In these

cases, we would like to develop an approach to response surface modeling which allows us to construct a

response surface based on some low fidelity function evaluations and update the coefficients governing

that response surface with a few high fidelity function evaluations. This approach of correcting a low-

fidelity response surface and updating it is used in some trust region [Eldred et al., 2004]. A variation on

this approach has been developed by Kennedy and O’Hagan (2000), who propose constructing an

autoregressive model where a higher-fidelity code output is assumed to be an autoregressive function of

the lower fidelity code output. Huang et. al (2004, 2005) have expanded on Kennedy and O’Hagan’s

approach and we have looked at their implementation in detail. The overall idea for multi-fidelity models

using a Bayesian autoregressive approach makes the following assumptions:

• Different levels of the same code are correlated in some way.

• The codes have a degree of smoothness in the sense that output values for similar inputs are

reasonably close.

• Prior beliefs each level of code can be modeled using a Gaussian process.

 46

We choose a notation similar to Huang’s. If there are l levels of code, l = 1, …, m, the assumption is that:

fl(x) = fl-1(x) + δl(x)

where δl(x) is independent of f1(x), f2(x), …, fl-1(x). This means that every level of code differs by the

previous level by some delta function. In KOH (2000), they assume a slightly more complex

autoregressive function:

fl(x) = ρ l-1fl-1(x) + δl(x)

The delta term δl(x) is meant to model the “systematic error” of a lower-fidelity system, (l–1), as

compared to the next higher-fidelity system, l. δl(x) is usually small in scale as compared to fl(x). In

KOH, both the δl(x) and fl(x) terms are modeled as Gaussian processes.

The major difference between what we have done and what Huang has done is that we have modeled the

mean of the GP with a regression term and he has modeled it as a constant. Another difference is that we

estimate the GP for the lower level model, f1(x), separately from δ1(x). Finally, there is an issue of

“matching” the models at the points. Both KOH and Huang evaluate the model at the same data points

(the same x values). We evaluated the low and high fidelity data both at the same points to construct the

delta term and at different points.

4.3.1. Implementation of Autoregressive GP Model

In kriging, the true, unknown response is assumed to be the sum of a linear model, a term representing the

systematic departure (bias) from the linear model, and noise (Cressie 1993). The approaches above

basically involve a kriging approach for the delta terms:

 δl(x) = bl(x)
T
 βl + Zl(x) + εl (l = 1, 2, …, m)

where bl and βl are the basis functions and coefficients, respectively, of the linear model. Zl is the

systematic departure and εl is the random error. Zl, is modeled as a zero-mean stationary Gaussian

process. Huang, Giunta (1998), and others often assume a constant term for the basis.

The covariance between two points x = (x1, … xd) and x' = (x'1, … x'd) for the δl(x) function is:

[]

′−−=′ ∑

=

d

j

jjjllZll xx
1

2

,

2

,)(exp)(),(cov θσδδ xx

where 2

, lZσ is the variance of the stochastic process, and θl,j is a “roughness” parameter associated with

the dimension j. A larger θl,j implies a higher “activity”, or lower spatial correlation, within the

dimension j.

In our initial implementation, we first estimated a Gaussian process for f1(x), then estimated δ1(x), then

summed the two results to obtain f2(x):

 f2(x) = f1(x) + δ2(x)

4.3.2. High/low fidelity autoregressive model results

The computational model of interest is the three-dimensional explicit transient dynamics code Presto.

Presto is a Lagrangian Finite Element code developed at Sandia National Laboratories. The application

here focuses on the mechanical deformation of a weapon at impact. This example has two levels of

 47

fidelity: a low fidelity model of a weapon with approximately 10K finite elements, and a high fidelity

model with approximately 50K elements and more detail in the modeling of internal structural elements.

As part of a preliminary investigation, we performed an orthogonal array (OA) parameter study on the

model. This allowed us to identify the important parameters in our model. In the following discussion, x

is an eight dimensional input space. We ran both the low and high fidelity models at 13 points in the

parameter space. These points are shown in Table 2. The output of the low and high fidelity models is

displacement. The displacement predictions from the computational codes are denoted as f1TRUE and

f2TRUE to differentiate them from the Gaussian process estimates of the low and high fidelity results, which

are f1(x) and f2(x), respectively. The code output is shown on Table 2 as well. We normalized the

output. You can see that the low fidelity code predictions of displacement are larger than the high

fidelity code predictions. It is this difference, the “delta term,” that we are trying to estimate with a

Gaussian process. Then, we will use the Gaussian process to predict what the delta term will be in the

case of 6 new points which have values in the X parameters that are outside the domain given in Table 2.

X1 X2 X3 X4 X5 X6 X7 X8 f1true f2true

15 5 10 0.375 0.0065 2625 12500 4.6 12.86 10.87

20 10 10 0.75 0.013 2750 12500 4.6 13.98 12.04

15 10 15 0.375 0.013 2750 13000 4.6 13.51 11.58

20 5 15 0.75 0.0065 2750 13000 4.7 15.69 13.73

15 10 10 0.75 0.013 2625 13000 4.7 14.46 12.31

15 5 15 0.375 0.013 2750 12500 4.7 13.66 11.48

15 5 10 0.75 0.0065 2750 13000 4.6 13.38 11.18

20 5 10 0.375 0.013 2625 13000 4.7 16.09 14.04

20 10 10 0.375 0.0065 2750 12500 4.7 15.18 12.85

20 10 15 0.375 0.0065 2625 13000 4.6 15.24 13.37

15 10 15 0.75 0.0065 2625 12500 4.7 13.96 11.72

20 5 15 0.75 0.013 2625 12500 4.6 14.30 12.38

20 10 15 0 0 2500 12000 4.5 13.23 11.43

Table 2. Computational model results, f1TRUE and f2TRUE, as a function of eight input variables.

Figure 16 shows the low and high level model results as a function of the first input variable, X1.

 48

0

2

4

6

8

10

12

14

16

18

10 12 14 16 18 20 22

X1

D
is

p
la

c
e
m

e
n
tt

High fidelity model: f2true

Low fidelity model: f1true

Figure 16. Displacement as a function of X1 for high and low fidelity codes, f1TRUE and f2TRUE.

The first step is to create a Gaussian process estimate of the low fidelity model. Then we create a

Gaussian process estimate of the delta term. To obtain the GP estimate f1(x), we took the 13 points from

the low-fidelity parameter study. The low fidelity GP model is: f1(x) = b1(x)
T
β1 + Z1(x) + ε1, where Zl is

modeled as a zero-mean stationary Gaussian process. The coefficients of the regression term are

estimated by a standard linear regression procedure, and we used maximum likelihood estimation of the

covariance parameters governing the GP term Zl.

After obtaining f1(x), we calculated the desired delta function between the high and low-fidelity models

as: f2(x) - f1(x) = δ2(x). That is, we took the actual high-level results from the 13 OA run, subtracted the

GP estimate of the function, to obtain the desired values for δ2(x). Then, we estimate the GP parameters

based on the 13 input points in the table above. In this case, δ2(x) is given as:

δ2(x) = b2(x)
T
β2 + Z2(x) + ε2.

With the Gaussian process models of f1(x) and δ2(x) developed, we now can use these to predict f2(x) at

some new points. We chose six new points shown in Table 3. We ran the high fidelity model at these

points to check the accuracy of our GP estimate, but we did NOT run the low fidelity model at these

points. Instead, we used the GP estimate f1(x). If the low fidelity function evaluations were cheap

enough computationally, one could use the code results for the low fidelity model and not use a GP

approximation of the low fidelity model. Note that our approach has two Gaussian process terms added

together to get the estimate of the high fidelity model: f2(x) = f1(x) + δ2(x). However, in practice, it may

be desirable just to create a Gaussian process model for the delta term if the “true” low fidelity

calculations are available.

 49

 X1 X2 X3 X4 X5 X6 X7 X8 F2true F2predicted

Error

Relative

% Error

17 7 13 0.5 0.01 2700 12500 5 14.70 14.49 0.21 1.46

25 10 10 0.75 0.013 2800 12500 4.6 12.77 13.41 -0.63 4.96

15 10 15 0.9 0.02 2700 12000 4.8 11.18 11.46 -0.28 2.50

20 5 15 0.2 0.005 2800 14000 4.7 15.41 15.40 0.01 0.06

15 10 15 0.2 0.005 2800 14000 4.8 14.89 14.67 0.22 1.46

20 5 15 0.9 0.02 2700 12000 4.7 11.90 12.18 -0.29 2.40

Table 2. New X input points where we compare the GP prediction, f2predicted, with the high fidelity

model, f2.

Figure 17 shows the “true” high level results for these six points, the GP predictions of these results, as

well as the GP predictions of the delta term and the low level model results.

-5

0

5

10

15

20

10 12 14 16 18 20 22 24 26

X1

D
is

p
la

c
e
m

e
n
t
 t

High fidelity: f2true

High fidelity prediction:
f2pred

GP delta estimate

GP Low estimate

Figure 17. High fidelity prediction, f2predicted, compared with the true high fidelity model, f2.

Overall, we have very good agreement: the displacement predicted by the GP autoregressive model and

the displacement obtained by the high fidelity “true” code calculation are very similar. The percentage

error in the GP model is less than 5% in all six cases shown in Table 3 and is less than 3% in five of the

cases. The largest error, for point 2, is due to the fact that this point represents a significant extrapolation

of X1: the data upon which the GP models were built (the 13 points in Table 2) only involved X1 at

values of 15 and 20, but this point has X1 at a value of 25. Note that we constructed Gaussian process

models for the low fidelity model and for the delta term only based on 13 points in 8 dimensional space.

Given that we are using these GP models to predict the output at 6 new points (where each new point

involves extrapolation on at least one dimension), the predictions look good. Also note that the prediction

of the low fidelity model gives higher estimates of displacement than the high fidelity model and the delta

term is always negative. This is what we expect based on the original 13 data points.

Based on these results, we can say that an autoregressive approach based on GP models seems reasonable

to pursue. We are currently addressing some issues relating to implementation of the covariance terms in

the GP models. Using Gaussian process models for low fidelity results and an estimate of the delta term

 50

between high and low fidelity to predict high fidelity results is a promising approach. This could have

many applications, especially in optimization and uncertainty quantification problems.

5. Summary
This memo presented several applications of Bayesian approaches to problems in engineering design:

reliability, regression modeling, calibration, and multi-fidelity models.

Bayesian reliability estimation is the easiest to implement, at least when one assumes the form of a binomial

failure model with a beta distribution on the failure parameter. However, Bayesian reliability estimation has

been primarily used in experimental regimes where one is acquiring large amounts of data on a continual

basis. In computational modeling, there may be some applicability, but we do not see this as a primary focus

area for the PRIDE LDRD, since we are not interested in “did it pass or fail” but by how much: what is the

variability in the results and how robust is the design? Bayesian reliability does not directly address these

issues.

The area of Bayesian regression is more promising, especially since surrogate models are now heavily

used in optimization of design problems. We see the potential of generating posterior distributions on the

regression coefficients (and thus generating “ensembles” or “families” of posterior regression models) for

use in optimization. For example, Bayesian regression might be used with multi-start approaches and/or

with trust region approaches. In trust region optimization, we could generate a family of posterior

regression models in the first trust region, then follow each of these initial optima through the rest of the

optimization process. Another approach is to generate one posterior distribution at the beginning of the

optimization process based on a discrete set of sample points in the space, then update that distribution as

additional points are taken.

The Bayesian statistics community has developed some ideas for calibration and also for multi-fidelity

approaches based on Gaussian processes combined with Bayesian updating. Specifically, Gaussian

processes are used to model the “code discrepancy” or model discrepancy term in calibration (the

difference between the computational model results and experimental data). In multi-fidelity modeling, a

“delta” term is used to correct a lower fidelity model to match or approximate a higher fidelity model.

The delta term is also approximated with a Gaussian process. In both the calibration and multi-fidelity

case, the terms governing the Gaussian process (e.g., the parameters of the covariance matrix) are

“updated” using a Bayesian approach. We have found that use of Gaussian process models requires a

good understanding of the method itself and an understanding of the problem in enough detail to

normalize parameters, identify reasonable covariance parameters, etc. The methods are not “black-box”

methods that can be used without some statistical understanding. However, GPs offer the ability to

account for uncertainties as well as provide an estimate of a delta or discrepancy term. That is why they

are very useful in design problems and why we think they have particular applicability to optimization

under uncertainty. Our preliminary research has shown that a multi-fidelity model, where a high fidelity

simulation is approximated by a lower fidelity simulation plus a GP delta term, is viable. A GP provides

a reasonable functional form for the delta term; a GP approach can greatly help reduce the number of

high-fidelity function evaluations necessary; and the GPs have good prediction capabilities. For these

reasons, we are excited about using the GP/Bayesian approach for design optimization problems under

uncertainty.

 51

6. References
6.1. Books

Berger, J.O. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, 1985.

Chen, M-H., Shao, Q-M., and J. G. Ibrahim (2000). Monte Carlo Methods in Bayesian Computation.

Springer-Verlag, New York.

Cressie, N. A. C. (1993), Statistics for Spatial Data, Wiley, New York.

Gamerman, D. (1997), Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference,

Chapman and Hall/CRC, Boca Raton.

Gelman, A. J. B. Carlin, H. S. Stern and D. B. Rubin (2004), Bayesian Data Analysis, 2
nd
 edition.

Chapman and Hall/CRC, Boca Raton.

Gilks, W.R., S. Richardson, and D.J. Spiegelhalter (1996). Markov Chain Monte Carlo in Practice.

Chapman and Hall/CRC, Boca Raton.

Jaynes, E.T. (2003). Bretthorst, GL, editor. Probability Theory: The Logic of Science. Cambridge

University Press.

Lindley, D.V. (1965). Introduction to Probability and Statistics from a Bayesian viewpoint. Cambridge

University Press, Cambridge.

O’Hagan, A. (1994). Kendall’s Advanced Theory of Statistics. Vol. 2B: Bayesian Inference. Oxford

University Press, New York.

Neter, J, W. Wasserman, and M. L. Kuter. Applied Linear Regression: Regression, Analysis of Variance,

and Experimental Designs. Homewood IL: Irwin, 1985.

Press, S. James. Bayesian Statistics: Principles, Models, and Applications. Wiley, 1989.

Press, S. J. (2003), Subjective and Objective Bayesian Statistics: Principles, Methods and Applications,

2
nd
 edition, 2003, Wiley, New York.

Robert, C. P. (2001). The Bayesian Choice, 2
nd
 ed. Springer-Verlag, New York.

6.2. Papers
6.2.1. Bayesian Models / Bayesian Calibration

Campbell, K. “A Brief Survey of Statistical Model Calibration Ideas”, Los Alamos Technical Report

LA-UR-02-3157. 2002.

Campbell, K. Exploring Bayesian Model Calibration: A Guide to Intuition. Los Alamos Technical

Report LA-UR-02-7175, 2002.

Cox, D.D., J. S. Park, and C. E. Singer (1996), “A Statistical Method for Tuning a Computer Code to a

Data Base,” Rice University Report, Tech Report 96-3.

 52

Craig, P. S., Goldstein, M., Rougier, J. C., and A. H. Seheult. “Bayesian Forecasting for Complex

Systems using Computer Simulators.” Journal of the American Statistical Association, 96(454). 2001

Ferson, S. 2005. Bayesian methods in risk assessment. Applied Biomathematics Technical Report,

available on-line at http://www.ramas.com/bayes.pdf.

Higdon, D., Kennedy, M., Cavendish, J., Cafeo, J., and R. D. Ryne. “Combining Field Data and

Computer Simulations for Calibration and Prediction.” SIAM Journal on Scientific Computing. 26,

448.466.(2004)

Hoeting, J. A., D. Madigan, A. E. Raftery and C. T. Volinsky, “Bayesian Model Averaging: A Tutorial

(with discussion),” Statistical Science, 14(382-401).1999

Kennedy, M. C. and A. O’Hagan. “Bayesian Calibration of Computer Models.” Journal of the Royal

Statistical Society, 63, pp. 425-464. 2001.

Kennedy, M. C. and A. O’Hagan, “Supplementary Details on Bayesian Calibration of Computer Codes,”

University of Sheffield, (http://www.shef.ac.uk/~st1ao/ps/calsup.ps) (Ref: Kennedy and O’Hagan, 2001)

Poole, D. and A. E. Raftery. “Inference for Deterministic Simulation Models: The Bayesian Melding

Approach.” Journal of the American Statistical Association, 95(452). 2000.

Swiler, L. P., Trucano, T.G. “Treatment of model uncertainty under calibration.” Proceedings of the 9
th

ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, 2004.

Trucano, T.G., L. P. Swiler, T. Igusa, W. L. Oberkampf, M. Pilch, Calibration, Validation, and

Sensitivity Analysis: What’s What.” Accepted for special issue of Reliability Engineering and System

Safety, to be published in 2006.

Zhang, R. and S. Mahadevan (2003), “Bayesian Methodology for Reliability Model Acceptance,”

Reliability Engineering and System Safety, Vol. 80, 95-103.

6.2.2. Bayesian Optimization

Pelikan, M., D. E. Goldberg, and E. Cantú-Paz. BOA: The Bayesian Optimization Algorithm.

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), 1:525-532, 1999.

Pelikan, M., D. E. Goldberg, and E. Cantú-Paz. BOA: The Bayesian Optimization Algorithm,

Population sizing, and Time to Convergence. Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO-2000), pp. 275-282, 2000.

6.2.3. Response Surface Modeling/Robust Design

Myers, R.H., Y. Kim, and K.L. Griffiths. “Response Surface Methods and the Use of Noise Variables.”

Journal of Quality Technology, Vol. 29, No. 4, 1997.

Khattree, R. “ Robust Parameter Design: A Response Surface Approach.” Journal of Quality

Technology, Vol. 28, No. 2, 1996.

Miro-Quesado, G., Del Castillo, E., and J. Peterson. “A Bayesian Approach for Multiple Response

Surface Optimization in the Presence of Noise Variables.” Penn State Technical Report – Engineering

Statistics Laboratory, 2002. Journal of Applied Statistics, 31 (3), pp. 251-270, (2004).

http://www.ramas.com/bayes.pdf
http://www.shef.ac.uk/~st1ao/ps/calsup.ps

 53

Peterson, J. “A Probability-based desirability function for multiresponse optimization.” Proceedings of

the Section on Quality and Productivity, Annual Meeting of the American Statistical Association, 2000.

Vining, G.G., and R.H. Myers. “Combining Taguchi and Response Surface Philosophies: A Dual

Response Approach.” Journal of Quality Technology, Vol. 22, No. 1, 1990.

6.2.4. Surrogate Modeling

Huang, D., T.T. Allen, W. I. Notz, and R. A. Miller, “Sequential Kriging Optimization Using Multiple

Fidelity Evaluations”, submitted to Structural and Multidisciplinary Optimization (2004).

Huang, D., Allen, T. T., Notz, W. I., and Zheng, N., “Global Optimization of Stochastic Black-Box

Systems via Sequential Kriging Meta-Models”, accepted by the Journal of Global Optimization (2005).

Eldred, M.S., Giunta, A.A., and Collis, S.S, "Second-Order Corrections for Surrogate-Based

Optimization with Model Hierarchies," paper AIAA-2004-4457 in Proceedings of the 10th AIAA/ISSMO

Multidisciplinary Analysis and Optimization Conference, Albany, NY, Aug. 30 - Sept. 1, 2004.

Jin, R., Du, X, and W. Chen. “The use of metamodeling techniques for optimization under uncertainty.”

In Proceedings of the ASME 2001 Design Engineering Technical Conference, DETC01.

Kennedy, M. C. and A. O’Hagan. “Predicting the output from a complex computer code when fast

approximations are available.” Biometrika, 87, pp. 1-13. 2000.

6.2.5. Gaussian Processes

Booker, Andrew. “Well-conditioned Kriging Models for Optimization of Computer Simulations.”

Technical Document Series, M&CT-TECH-002, Phantom Works, Mathematics and Computing

Technology, The Boeing Company, Seattle, WA, 2000.

Gibbs, M. and D. J. C. MacKay. Efficient Implementation of Gaussian Processes. On the Gaussian

process web site: http://www.cs.toronto.edu/~carl/gp.html

Lee, H., R. Gramacy, and W. Macready. Parameter Space Exploration With Gaussian Process Trees

Proceedings of the International Conference on Machine Learning, 2004, pp. 353-360.

Mackay, D. J. C. “Gaussian Processes: A replacement for supervised neural networks?”

Also on the Gaussian process web site.

Neal, Radford. Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and

Classification. Technical Report 9702, Dept. of Statistics, University of Toronto (1997).

Rasmussen, Carl. Evaluation of Gaussian Processes and Other Methods for Nonlinear Regression.

Ph.D. Thesis, University of Toronto, 1996.

Swiler, Laura P, "Gaussian Processes in Response Surface Modeling," Conference Paper, Society of

Experimental Mechanics IMAC Modal Analysis Conference 2006, January 2006

Williams, Chris (2002). “Gaussian Processes” chapter in The Handbook of Brain Theory and Neural

Networks, M. Arbib, ed. Cambridge, MA: MIT Press.

http://www.mse.eng.ohio-state.edu/~huangd/writingSamples/Stochastic_Optimization_Sequential_Kriging.pdf
http://www.mse.eng.ohio-state.edu/~huangd/writingSamples/Stochastic_Optimization_Sequential_Kriging.pdf
http://endo.sandia.gov/DAKOTA/papers/SBO_Corr_MAO_paper.pdf
http://endo.sandia.gov/DAKOTA/papers/SBO_Corr_MAO_paper.pdf
http://www.aicml.cs.ualberta.ca/banff04/icml/pages/papers/133.ps
http://gaston.sandia.gov/cfupload/ccim_pubs_prod/119_swi.pdf

 54

6.3. Web sites
General link to Bayesian software sites:

http://www.mas.ncl.ac.uk/~ndjw1/bookmarks/Stats/Software-Statistical_computing/Bayesian_software/

http://astrosun.tn.cornell.edu/staff/loredo/bayes/ - software

http://www.math.wsu.edu/math/faculty/genz/homepage

http://www.cs.toronto.edu/~radford/fbm.software.html

http://www.mrc-bsu.cam.ac.uk/bugs/

http://www.shef.ac.uk/~st1ao/1b.html

Nabney, Ian. Netlab software. Documentation and software at: www.ncrg.aston.ac.uk/netlab/

Neal, Radford. Flexible Bayesian Software documentation:

http://www.cs.toronto.edu/~radford/fbm.software.html

NIST Statistical site:

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm

http://www.mas.ncl.ac.uk/~ndjw1/bookmarks/Stats/Software-Statistical_computing/Bayesian_software/
http://astrosun.tn.cornell.edu/staff/loredo/bayes/#software
http://www.math.wsu.edu/math/faculty/genz/homepage
http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.shef.ac.uk/~st1ao/1b.html
http://www.ncrg.aston.ac.uk/netlab/
http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm

 55

7. Distribution

1 MS0370 Brian Adams 01411

1 MS0370 Roscoe Bartlett 01411

1 MS1110 Daniel Dunlavy 01411

1 MS0370 Michael Eldred 01411

1 MS0370 David Gay 01411

1 MS0370 Patrick Knupp 01411

1 MS0370 Scott Mitchell 01411

4 MS0370 Laura P. Swiler 01411

1 MS0370 Steve Thomas 01411

1 MS0370 Timothy G. Trucano 01411

1 MS0370 Bart Van Bloemen Waanders 01411

1 MS1110 Suzanne Rountree 01415

1 MS1110 Robert Heaphy 01415

1 MS0847 Richard Field 01526

1 MS0828 Kevin Dowding 01533

1 MS0828 Anthony Giunta 01533

1 MS0828 Richard G. Hills 01533

1 MS0828 William Oberkampf 01533

1 MS0828 Martin Pilch 01533

1 MS0828 Vicente Romero 01533

1 MS0748 David G. Robinson 06861

1 MS0829 Brian Rutherford 12337

1 MS9159 Patricia D. Hough 08962

1 MS9159 Monica Martinez-Canales 08962

1 MS9042 Michael L. Chiesa 08774

1 MS9950 Randolph R. Settgast 08774

1 MS0123 LDRD Office 01011

2 MS9018 Central Technical File 08945-1

2 MS0899 Technical Library 04536

External Distribution:

Scott Ferson

Applied Biomathematics

100 North Country Road

Setauket, NY 11733-1345

Prof. Herbert Lee

UC Santa Cruz, School of Engineering,

1156 High Street

Santa Cruz, CA 95064

	Introduction
	Fundamentals of Bayesian Inference
	Discrete case
	Continuous case
	Hypothesis Testing
	Controversy with Bayesian Inference
	Simple Example of Bayesian Inference
	Conjugate pairs
	Calculations from Markov Chain Monte Carlo
	Metropolis-Hasting algorithm
	Gibbs Sampling

	Bayesian Software

	Application to Engineering Problems I
	Example Reliability Problem
	Binomial Model
	FirstBayes solution
	BUGS solution
	YADAS Solution

	Bayesian Regression
	Regression analysis in FirstBayes
	Linear Regression in BUGS

	Bayesian Regression Models in Optimization
	Bayesian Methods in Optimization

	Application to Engineering Problems II
	Gaussian Processes
	Gaussian Process Model of the Rosenbrock function
	Netlab implementation of Gaussian Processes
	FBM Implementation of Gaussian Processes
	Prototype SNL Gaussian Process code

	Calibration under Uncertainty
	Gaussian Process of Model Discrepancy
	Modification of the Gaussian process model for discrepancy

	High/low fidelity autoregressive models
	Implementation of Autoregressive GP Model
	High/low fidelity autoregressive model results

	Summary
	References
	Books
	Papers
	Bayesian Models / Bayesian Calibration
	Bayesian Optimization
	Response Surface Modeling/Robust Design
	Surrogate Modeling
	Gaussian Processes

	Web sites

	Distribution

	: April 2006
	Text4: Laura P. Swiler

